lang-seg / lseg_app.py
akhaliq's picture
akhaliq HF staff
add files
0870534
raw
history blame
11.6 kB
from collections import namedtuple
import altair as alt
import math
import pandas as pd
import streamlit as st
st.set_page_config(layout="wide")
from PIL import Image
import os
import torch
import os
import argparse
import numpy as np
from tqdm import tqdm
from collections import OrderedDict
import torch
import torch.nn.functional as F
from torch.utils import data
import torchvision.transforms as transform
from torch.nn.parallel.scatter_gather import gather
from additional_utils.models import LSeg_MultiEvalModule
from modules.lseg_module import LSegModule
import cv2
import math
import types
import functools
import torchvision.transforms as torch_transforms
import copy
import itertools
from PIL import Image
import matplotlib.pyplot as plt
import clip
from encoding.models.sseg import BaseNet
import matplotlib as mpl
import matplotlib.colors as mplc
import matplotlib.figure as mplfigure
import matplotlib.patches as mpatches
from matplotlib.backends.backend_agg import FigureCanvasAgg
from data import get_dataset
import torchvision.transforms as transforms
def get_new_pallete(num_cls):
n = num_cls
pallete = [0]*(n*3)
for j in range(0,n):
lab = j
pallete[j*3+0] = 0
pallete[j*3+1] = 0
pallete[j*3+2] = 0
i = 0
while (lab > 0):
pallete[j*3+0] |= (((lab >> 0) & 1) << (7-i))
pallete[j*3+1] |= (((lab >> 1) & 1) << (7-i))
pallete[j*3+2] |= (((lab >> 2) & 1) << (7-i))
i = i + 1
lab >>= 3
return pallete
def get_new_mask_pallete(npimg, new_palette, out_label_flag=False, labels=None):
"""Get image color pallete for visualizing masks"""
# put colormap
out_img = Image.fromarray(npimg.squeeze().astype('uint8'))
out_img.putpalette(new_palette)
if out_label_flag:
assert labels is not None
u_index = np.unique(npimg)
patches = []
for i, index in enumerate(u_index):
label = labels[index]
cur_color = [new_palette[index * 3] / 255.0, new_palette[index * 3 + 1] / 255.0, new_palette[index * 3 + 2] / 255.0]
red_patch = mpatches.Patch(color=cur_color, label=label)
patches.append(red_patch)
return out_img, patches
@st.cache(allow_output_mutation=True)
def load_model():
class Options:
def __init__(self):
parser = argparse.ArgumentParser(description="PyTorch Segmentation")
# model and dataset
parser.add_argument(
"--model", type=str, default="encnet", help="model name (default: encnet)"
)
parser.add_argument(
"--backbone",
type=str,
default="clip_vitl16_384",
help="backbone name (default: resnet50)",
)
parser.add_argument(
"--dataset",
type=str,
default="ade20k",
help="dataset name (default: pascal12)",
)
parser.add_argument(
"--workers", type=int, default=16, metavar="N", help="dataloader threads"
)
parser.add_argument(
"--base-size", type=int, default=520, help="base image size"
)
parser.add_argument(
"--crop-size", type=int, default=480, help="crop image size"
)
parser.add_argument(
"--train-split",
type=str,
default="train",
help="dataset train split (default: train)",
)
parser.add_argument(
"--aux", action="store_true", default=False, help="Auxilary Loss"
)
parser.add_argument(
"--se-loss",
action="store_true",
default=False,
help="Semantic Encoding Loss SE-loss",
)
parser.add_argument(
"--se-weight", type=float, default=0.2, help="SE-loss weight (default: 0.2)"
)
parser.add_argument(
"--batch-size",
type=int,
default=16,
metavar="N",
help="input batch size for \
training (default: auto)",
)
parser.add_argument(
"--test-batch-size",
type=int,
default=16,
metavar="N",
help="input batch size for \
testing (default: same as batch size)",
)
# cuda, seed and logging
parser.add_argument(
"--no-cuda",
action="store_true",
default=False,
help="disables CUDA training",
)
parser.add_argument(
"--seed", type=int, default=1, metavar="S", help="random seed (default: 1)"
)
# checking point
parser.add_argument(
"--weights", type=str, default='', help="checkpoint to test"
)
# evaluation option
parser.add_argument(
"--eval", action="store_true", default=False, help="evaluating mIoU"
)
parser.add_argument(
"--export",
type=str,
default=None,
help="put the path to resuming file if needed",
)
parser.add_argument(
"--acc-bn",
action="store_true",
default=False,
help="Re-accumulate BN statistics",
)
parser.add_argument(
"--test-val",
action="store_true",
default=False,
help="generate masks on val set",
)
parser.add_argument(
"--no-val",
action="store_true",
default=False,
help="skip validation during training",
)
parser.add_argument(
"--module",
default='lseg',
help="select model definition",
)
# test option
parser.add_argument(
"--data-path", type=str, default='../datasets/', help="path to test image folder"
)
parser.add_argument(
"--no-scaleinv",
dest="scale_inv",
default=True,
action="store_false",
help="turn off scaleinv layers",
)
parser.add_argument(
"--widehead", default=False, action="store_true", help="wider output head"
)
parser.add_argument(
"--widehead_hr",
default=False,
action="store_true",
help="wider output head",
)
parser.add_argument(
"--ignore_index",
type=int,
default=-1,
help="numeric value of ignore label in gt",
)
parser.add_argument(
"--label_src",
type=str,
default="default",
help="how to get the labels",
)
parser.add_argument(
"--arch_option",
type=int,
default=0,
help="which kind of architecture to be used",
)
parser.add_argument(
"--block_depth",
type=int,
default=0,
help="how many blocks should be used",
)
parser.add_argument(
"--activation",
choices=['lrelu', 'tanh'],
default="lrelu",
help="use which activation to activate the block",
)
self.parser = parser
def parse(self):
args = self.parser.parse_args(args=[])
args.cuda = not args.no_cuda and torch.cuda.is_available()
print(args)
return args
args = Options().parse()
torch.manual_seed(args.seed)
args.test_batch_size = 1
alpha=0.5
args.scale_inv = False
args.widehead = True
args.dataset = 'ade20k'
args.backbone = 'clip_vitl16_384'
args.weights = 'checkpoints/demo_e200.ckpt'
args.ignore_index = 255
module = LSegModule.load_from_checkpoint(
checkpoint_path=args.weights,
data_path=args.data_path,
dataset=args.dataset,
backbone=args.backbone,
aux=args.aux,
num_features=256,
aux_weight=0,
se_loss=False,
se_weight=0,
base_lr=0,
batch_size=1,
max_epochs=0,
ignore_index=args.ignore_index,
dropout=0.0,
scale_inv=args.scale_inv,
augment=False,
no_batchnorm=False,
widehead=args.widehead,
widehead_hr=args.widehead_hr,
map_locatin="cpu",
arch_option=0,
block_depth=0,
activation='lrelu',
)
input_transform = module.val_transform
# dataloader
loader_kwargs = (
{"num_workers": args.workers, "pin_memory": True} if args.cuda else {}
)
# model
if isinstance(module.net, BaseNet):
model = module.net
else:
model = module
model = model.eval()
model = model.cpu()
scales = (
[0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25]
if args.dataset == "citys"
else [0.5, 0.75, 1.0, 1.25, 1.5, 1.75]
)
model.mean = [0.5, 0.5, 0.5]
model.std = [0.5, 0.5, 0.5]
evaluator = LSeg_MultiEvalModule(
model, scales=scales, flip=True
).cuda()
evaluator.eval()
transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
transforms.Resize([360,480]),
]
)
return evaluator, transform
"""
# LSeg Demo
"""
lseg_model, lseg_transform = load_model()
uploaded_file = st.file_uploader("Choose an image...")
input_labels = st.text_input("Input labels", value="dog, grass, other")
st.write("The labels are", input_labels)
if uploaded_file is not None:
image = Image.open(uploaded_file)
pimage = lseg_transform(np.array(image)).unsqueeze(0)
labels = []
for label in input_labels.split(","):
labels.append(label.strip())
with torch.no_grad():
outputs = lseg_model.parallel_forward(pimage, labels)
predicts = [
torch.max(output, 1)[1].cpu().numpy()
for output in outputs
]
image = pimage[0].permute(1,2,0)
image = image * 0.5 + 0.5
image = Image.fromarray(np.uint8(255*image)).convert("RGBA")
pred = predicts[0]
new_palette = get_new_pallete(len(labels))
mask, patches = get_new_mask_pallete(pred, new_palette, out_label_flag=True, labels=labels)
seg = mask.convert("RGBA")
fig = plt.figure()
plt.subplot(121)
plt.imshow(image)
plt.axis('off')
plt.subplot(122)
plt.imshow(seg)
plt.legend(handles=patches, loc='upper right', bbox_to_anchor=(1.3, 1), prop={'size': 5})
plt.axis('off')
plt.tight_layout()
#st.image([image,seg], width=700, caption=["Input image", "Segmentation"])
st.pyplot(fig)