Spaces:
Sleeping
Sleeping
first commit
Browse filesfirst try on both gradio and huggingface spaces.
app.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
from huggingface_hub import snapshot_download
|
5 |
+
|
6 |
+
# Set device to CPU
|
7 |
+
device = "cpu"
|
8 |
+
repo_id = 'amgadhasan/phi-2'
|
9 |
+
model_path = snapshot_download(repo_id=repo_id, repo_type="model", local_dir="./phi-2", use_auth_token=False)
|
10 |
+
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
12 |
+
|
13 |
+
# Set default dtype to float32 for compatibility with CPU
|
14 |
+
torch.set_default_dtype(torch.float32)
|
15 |
+
|
16 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto", trust_remote_code=True)
|
17 |
+
|
18 |
+
def generate(prompt):
|
19 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
20 |
+
outputs = model.generate(**inputs, max_length=200)
|
21 |
+
completion = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
22 |
+
return completion
|
23 |
+
|
24 |
+
def ask_question(user_question):
|
25 |
+
if user_question.lower() == 'quit':
|
26 |
+
return "Session ended. Goodbye!"
|
27 |
+
else:
|
28 |
+
# Here, we're explicitly setting the context for an academic answer.
|
29 |
+
prompt = f"Academic response to the question about basic science subjects: {user_question}"
|
30 |
+
answer = generate(prompt)
|
31 |
+
return answer
|
32 |
+
|
33 |
+
iface = gr.Interface(fn=ask_question, inputs="text", outputs="text")
|
34 |
+
iface.launch(share=True)
|