Spaces:
Sleeping
Sleeping
ishanarang
commited on
Commit
•
e9a9a67
1
Parent(s):
87dfd2e
deploy
Browse files- Sapp.py +103 -0
- context_5_embedding_10.pth +0 -0
- context_5_embedding_5.pth +0 -0
- context_7_embedding_10.pth +0 -0
- context_7_embedding_5.pth +0 -0
Sapp.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torch import nn
|
5 |
+
import pandas as pd
|
6 |
+
import matplotlib.pyplot as plt # for making figures
|
7 |
+
# %matplotlib inline
|
8 |
+
# %config InlineBackend.figure_format = 'retina'
|
9 |
+
from pprint import pprint
|
10 |
+
|
11 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
+
data = open('shakespeare2.txt', 'r').read()
|
13 |
+
|
14 |
+
unique_chars = list(set(''.join(data)))
|
15 |
+
unique_chars.sort()
|
16 |
+
to_string = {i:ch for i, ch in enumerate(unique_chars)}
|
17 |
+
to_int = {ch:i for i, ch in enumerate(unique_chars)}
|
18 |
+
|
19 |
+
|
20 |
+
class NextChar(nn.Module):
|
21 |
+
def __init__(self, block_size, vocab_size, emb_dim, hidden_dims):
|
22 |
+
super().__init__()
|
23 |
+
self.emb = nn.Embedding(vocab_size, emb_dim)
|
24 |
+
self.lin1 = nn.Linear(block_size * emb_dim, hidden_dims[0])
|
25 |
+
self.lin2 = nn.Linear(hidden_dims[0], hidden_dims[1])
|
26 |
+
self.lin3 = nn.Linear(hidden_dims[1], vocab_size)
|
27 |
+
|
28 |
+
def forward(self, x):
|
29 |
+
x = self.emb(x)
|
30 |
+
x = x.view(x.shape[0], -1)
|
31 |
+
x = torch.sin(self.lin1(x))
|
32 |
+
x = torch.sin(self.lin2(x))
|
33 |
+
x = self.lin3(x)
|
34 |
+
return x
|
35 |
+
|
36 |
+
# For context size 5 and embedding size 5
|
37 |
+
model_c5_e5 = NextChar(5, len(to_int), 5, [64, 64])
|
38 |
+
model_c5_e5.load_state_dict(torch.load("context_5_embedding_5.pth"))
|
39 |
+
|
40 |
+
# For context size 5 and embedding size 10
|
41 |
+
model_c5_e10 = NextChar(5, len(to_int), 10, [64, 64])
|
42 |
+
model_c5_e10.load_state_dict(torch.load("context_5_embedding_10.pth"))
|
43 |
+
|
44 |
+
# For context size 7 and embedding size 5
|
45 |
+
model_c7_e5 = NextChar(7, len(to_int), 5, [64, 64])
|
46 |
+
model_c7_e5.load_state_dict(torch.load("context_7_embedding_5.pth"))
|
47 |
+
|
48 |
+
# For context size 7 and embedding size 10
|
49 |
+
model_c7_e10 = NextChar(7, len(to_int), 10, [64, 64])
|
50 |
+
model_c7_e10.load_state_dict(torch.load("context_7_embedding_10.pth"))
|
51 |
+
|
52 |
+
random_seed = 3
|
53 |
+
g = torch.Generator()
|
54 |
+
g.manual_seed(random_seed)
|
55 |
+
torch.manual_seed(random_seed)
|
56 |
+
def generate_name(model,sentence, itos, stoi, block_size, max_len=10):
|
57 |
+
original_sentence = sentence
|
58 |
+
if len(sentence) < block_size:
|
59 |
+
sentence = " " * (block_size - len(sentence)) + sentence
|
60 |
+
using_for_predicction = sentence[-block_size:].lower()
|
61 |
+
context = [stoi[word] for word in using_for_predicction]
|
62 |
+
prediction = ""
|
63 |
+
for i in range(max_len):
|
64 |
+
x = torch.tensor(context).view(1, -1).to(device)
|
65 |
+
print(type(model))
|
66 |
+
y_pred = model(x)
|
67 |
+
ix = torch.distributions.categorical.Categorical(logits=y_pred).sample().item()
|
68 |
+
ch = itos[ix]
|
69 |
+
prediction += ch
|
70 |
+
context = context[1:] + [ix]
|
71 |
+
|
72 |
+
return original_sentence + prediction
|
73 |
+
|
74 |
+
# Streamlit app
|
75 |
+
st.title("Next K Text Generation with MLP")
|
76 |
+
st.sidebar.title("Settings")
|
77 |
+
|
78 |
+
|
79 |
+
input_string = st.sidebar.text_input("Input String")
|
80 |
+
nextk = st.sidebar.number_input("Next K Tokens", min_value=1, max_value=500, value=150)
|
81 |
+
block_size = st.select_slider("Block Size", options=[5,7], value=5)
|
82 |
+
embedding_size = st.select_slider("Embedding Size", options=[5,10], value=5)
|
83 |
+
|
84 |
+
|
85 |
+
if st.sidebar.button("Generate Text"):
|
86 |
+
|
87 |
+
if block_size == 5:
|
88 |
+
context = input_string
|
89 |
+
if embedding_size == 5:
|
90 |
+
generated_text = generate_name(model_c5_e5,context, to_string, to_int, 5, max_len=nextk)
|
91 |
+
else:
|
92 |
+
generated_text = generate_name(model_c5_e10,context, to_string, to_int, 5, max_len=nextk)
|
93 |
+
elif block_size == 7:
|
94 |
+
context = input_string
|
95 |
+
if embedding_size == 10:
|
96 |
+
generated_text = generate_name(model_c7_e10, context, to_string, to_int, 7 ,max_len=nextk)
|
97 |
+
else:
|
98 |
+
generated_text = generate_name(model_c7_e5, context, to_string, to_int, 7, max_len=nextk)
|
99 |
+
st.write("Generated Text:")
|
100 |
+
st.write(generated_text)
|
101 |
+
|
102 |
+
|
103 |
+
|
context_5_embedding_10.pth
ADDED
Binary file (51.8 kB). View file
|
|
context_5_embedding_5.pth
ADDED
Binary file (44 kB). View file
|
|
context_7_embedding_10.pth
ADDED
Binary file (56.9 kB). View file
|
|
context_7_embedding_5.pth
ADDED
Binary file (46.6 kB). View file
|
|