ishaan-mital commited on
Commit
714ea85
·
1 Parent(s): d99b731
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -2,15 +2,15 @@ import gradio as gr
2
  import os
3
  import pinecone
4
  import time
5
- # from torch import cuda
6
  from langchain.embeddings.huggingface import HuggingFaceEmbeddings
7
- # import PyPDF2
8
- # import re
9
  from langchain.vectorstores import Pinecone
10
  from langchain import HuggingFaceHub, LLMChain
11
  from langchain.prompts import PromptTemplate
12
  from langchain.chains import RetrievalQA
13
 
 
14
  embed_model_id = 'sentence-transformers/all-MiniLM-L6-v2'
15
  # device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu'
16
 
@@ -48,8 +48,6 @@ index = pinecone.Index(index_name)
48
  index.describe_index_stats()
49
 
50
 
51
-
52
-
53
  text_field = 'text' # field in metadata that contains text content
54
 
55
  vectorstore = Pinecone(
@@ -57,7 +55,7 @@ vectorstore = Pinecone(
57
  )
58
 
59
 
60
- hub = HuggingFaceHub(repo_id = "HuggingFaceH4/zephyr-7b-beta",huggingfacehub_api_token="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")
61
  print(hub)
62
  prompt = PromptTemplate(
63
  input_variables=["question"],
@@ -70,7 +68,9 @@ rag_pipeline = RetrievalQA.from_chain_type(
70
  )
71
 
72
  def question(question):
 
73
  answer = rag_pipeline(question)
 
74
  return answer
75
 
76
  demo = gr.Interface(fn=question, inputs="text", outputs="text")
 
2
  import os
3
  import pinecone
4
  import time
 
5
  from langchain.embeddings.huggingface import HuggingFaceEmbeddings
6
+ import torch
7
+ import sentence_transformers
8
  from langchain.vectorstores import Pinecone
9
  from langchain import HuggingFaceHub, LLMChain
10
  from langchain.prompts import PromptTemplate
11
  from langchain.chains import RetrievalQA
12
 
13
+ headers = {"Authorization": f"Bearer {os.environ.get('API_KEY')}"}
14
  embed_model_id = 'sentence-transformers/all-MiniLM-L6-v2'
15
  # device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu'
16
 
 
48
  index.describe_index_stats()
49
 
50
 
 
 
51
  text_field = 'text' # field in metadata that contains text content
52
 
53
  vectorstore = Pinecone(
 
55
  )
56
 
57
 
58
+ hub = HuggingFaceHub(repo_id = "HuggingFaceH4/zephyr-7b-beta",huggingfacehub_api_token={os.environ.get('API_KEY')})
59
  print(hub)
60
  prompt = PromptTemplate(
61
  input_variables=["question"],
 
68
  )
69
 
70
  def question(question):
71
+ global chatbot
72
  answer = rag_pipeline(question)
73
+ chatbot = answer
74
  return answer
75
 
76
  demo = gr.Interface(fn=question, inputs="text", outputs="text")