Spaces:
Sleeping
Sleeping
set up MVP
Browse files
app.py
CHANGED
@@ -34,14 +34,22 @@ dotenv.load_dotenv()
|
|
34 |
text_splitter = CharacterTextSplitter(chunk_size=350, chunk_overlap=0)
|
35 |
|
36 |
# flan_ul2 = HuggingFaceHub(repo_id="HuggingFaceH4/zephyr-7b-beta", model_kwargs={"temperature":0.1, "max_new_tokens":300})
|
37 |
-
flan_ul2 = OpenAI()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
global qa
|
40 |
|
41 |
# embeddings = HuggingFaceHubEmbeddings()
|
42 |
COHERE_API_KEY = os.getenv("COHERE_API_KEY")
|
43 |
embeddings = CohereEmbeddings(
|
44 |
-
model="embed-english-
|
45 |
cohere_api_key=COHERE_API_KEY
|
46 |
)
|
47 |
|
@@ -126,24 +134,26 @@ def add_text(history, text):
|
|
126 |
history = history + [(text, None)]
|
127 |
return history, ""
|
128 |
|
129 |
-
# def bot(history):
|
130 |
-
# response = infer(history[-1][0])
|
131 |
-
# history[-1][1] = response['result']
|
132 |
-
# return history
|
133 |
-
|
134 |
def bot(history):
|
135 |
-
response = infer(history[-1][0],
|
136 |
-
|
137 |
-
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
-
def infer(question, history):
|
141 |
|
142 |
query = question
|
143 |
# result = qa({"query": query, "context":""})
|
144 |
# result = qa({"query": query, })
|
145 |
result = qa({"query": query, "history": history, "question": question})
|
146 |
|
|
|
147 |
return result
|
148 |
|
149 |
css="""
|
|
|
34 |
text_splitter = CharacterTextSplitter(chunk_size=350, chunk_overlap=0)
|
35 |
|
36 |
# flan_ul2 = HuggingFaceHub(repo_id="HuggingFaceH4/zephyr-7b-beta", model_kwargs={"temperature":0.1, "max_new_tokens":300})
|
37 |
+
# flan_ul2 = OpenAI()
|
38 |
+
from langchain.chat_models import ChatOpenAI
|
39 |
+
|
40 |
+
flan_ul2 = chat = ChatOpenAI(
|
41 |
+
model_name='gpt-3.5-turbo-16k',
|
42 |
+
# temperature = self.config.llm.temperature,
|
43 |
+
# openai_api_key = self.config.llm.openai_api_key,
|
44 |
+
# max_tokens=self.config.llm.max_tokens
|
45 |
+
)
|
46 |
|
47 |
global qa
|
48 |
|
49 |
# embeddings = HuggingFaceHubEmbeddings()
|
50 |
COHERE_API_KEY = os.getenv("COHERE_API_KEY")
|
51 |
embeddings = CohereEmbeddings(
|
52 |
+
model="embed-english-v3.0",
|
53 |
cohere_api_key=COHERE_API_KEY
|
54 |
)
|
55 |
|
|
|
134 |
history = history + [(text, None)]
|
135 |
return history, ""
|
136 |
|
|
|
|
|
|
|
|
|
|
|
137 |
def bot(history):
|
138 |
+
response = infer(history[-1][0],"")
|
139 |
+
history[-1][1] = response['answer']
|
140 |
+
return history
|
141 |
+
|
142 |
+
# def bot(history):
|
143 |
+
# response = infer(history[-1][0], history)
|
144 |
+
# sources = [doc.metadata.get("source") for doc in response['source_documents']]
|
145 |
+
# src_list = '\n'.join(sources)
|
146 |
+
# print_this = response['answer'] + "\n\n\n Sources: \n\n\n" + src_list
|
147 |
+
# return print_this
|
148 |
|
149 |
+
def infer(question, history) -> dict:
|
150 |
|
151 |
query = question
|
152 |
# result = qa({"query": query, "context":""})
|
153 |
# result = qa({"query": query, })
|
154 |
result = qa({"query": query, "history": history, "question": question})
|
155 |
|
156 |
+
# result = result['answer']
|
157 |
return result
|
158 |
|
159 |
css="""
|