isankhaa's picture
Upload app.py with huggingface_hub
d00bc89 verified
import os
import torch
import numpy as np
import wave
import tempfile
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer
from snac import SNAC
from huggingface_hub import login, upload_file, hf_hub_download, snapshot_download
from datetime import datetime, timezone, timedelta
# Login
HF_TOKEN = os.environ.get("HF_TOKEN")
if HF_TOKEN:
login(token=HF_TOKEN)
# Configuration from environment
MODEL_REPO = os.environ.get("MODEL_REPO", "isankhaa/or-my-model")
SUBFOLDER = os.environ.get("SUBFOLDER", "epoch-34")
BASE_MODEL = os.environ.get("BASE_MODEL", "canopylabs/orpheus-tts-0.1-pretrained")
OUTPUT_REPO = os.environ.get("OUTPUT_REPO", "isankhaa/or-my-model")
SAMPLE_RATE = 24000
VOICE = "mongolian"
print(f"Model: {MODEL_REPO}/{SUBFOLDER}")
# Global variables
model = None
tokenizer = None
snac = None
def load_models():
global model, tokenizer, snac
print("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
print(f"Loading model from {MODEL_REPO}/{SUBFOLDER}...")
model = AutoModelForCausalLM.from_pretrained(
MODEL_REPO,
subfolder=SUBFOLDER,
torch_dtype=torch.bfloat16,
device_map="cpu" # Load to CPU first, move to GPU in generate
)
model.eval()
print(f"Model loaded: {model.num_parameters():,} parameters")
print("Loading SNAC codec...")
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").eval()
print("All models loaded!")
# Load models at startup
load_models()
@spaces.GPU(duration=120)
def generate_speech(text, temperature=0.7, top_p=0.9, max_tokens=4096, upload_to_hf=False):
"""Generate speech from text using ZeroGPU"""
global model, tokenizer, snac
if not text.strip():
return None, "Error: Empty text"
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# Move models to GPU
model.to(device)
snac.to(device)
try:
# Format prompt
prompt = f"{VOICE}: {text}"
text_tokens = tokenizer.encode(prompt, add_special_tokens=False)
# Build input
input_ids = [128259]
input_ids.extend(text_tokens)
input_ids.extend([128009, 128260])
input_tensor = torch.tensor([input_ids], device=device)
attention_mask = torch.ones_like(input_tensor)
print(f"Input tokens: {len(input_ids)}")
# Generate
with torch.inference_mode():
output = model.generate(
input_tensor,
attention_mask=attention_mask,
max_new_tokens=max_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
repetition_penalty=1.1,
pad_token_id=128263,
eos_token_id=128257,
)
# Extract audio tokens
generated = output[0, len(input_ids):].tolist()
audio_tokens = []
for token_id in generated:
if 128266 <= token_id <= 156937:
audio_tokens.append(token_id)
elif token_id == 128257:
break
print(f"Generated {len(audio_tokens)} audio tokens")
if len(audio_tokens) < 7:
return None, f"Error: Only generated {len(audio_tokens)} audio tokens"
# Decode audio tokens
snac_tokens = []
for idx, token_id in enumerate(audio_tokens):
layer = idx % 7
snac_val = token_id - 128266 - (layer * 4096)
snac_tokens.append(snac_val)
num_frames = len(snac_tokens) // 7
snac_tokens = snac_tokens[:num_frames * 7]
codes_0, codes_1, codes_2 = [], [], []
for i in range(num_frames):
base = i * 7
codes_0.append(snac_tokens[base])
codes_1.append(snac_tokens[base + 1])
codes_1.append(snac_tokens[base + 4])
codes_2.append(snac_tokens[base + 2])
codes_2.append(snac_tokens[base + 3])
codes_2.append(snac_tokens[base + 5])
codes_2.append(snac_tokens[base + 6])
codes = [
torch.tensor([codes_0], device=device, dtype=torch.int32),
torch.tensor([codes_1], device=device, dtype=torch.int32),
torch.tensor([codes_2], device=device, dtype=torch.int32),
]
# Clip to valid range
for layer_idx, c in enumerate(codes):
codes[layer_idx] = torch.clamp(c, 0, 4095)
# Decode
with torch.inference_mode():
audio = snac.decode(codes)
audio_np = audio.squeeze().cpu().numpy()
duration = len(audio_np) / SAMPLE_RATE
# Save to temp file
temp_file = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
audio_int16 = (audio_np * 32767).astype(np.int16)
with wave.open(temp_file.name, "w") as wav_file:
wav_file.setnchannels(1)
wav_file.setsampwidth(2)
wav_file.setframerate(SAMPLE_RATE)
wav_file.writeframes(audio_int16.tobytes())
status = f"Success! Duration: {duration:.2f}s, Audio tokens: {len(audio_tokens)}"
# Upload to HuggingFace if requested
if upload_to_hf and HF_TOKEN:
try:
tz_mongolia = timezone(timedelta(hours=8))
timestamp = datetime.now(tz_mongolia).strftime("%Y-%m-%d_%H-%M")
output_file = f"{SUBFOLDER}-test-{timestamp}.wav"
upload_path = SUBFOLDER + "/test_output/" + output_file
upload_file(
path_or_fileobj=temp_file.name,
path_in_repo=upload_path,
repo_id=OUTPUT_REPO,
repo_type="model",
)
status += f"\nUploaded: https://huggingface.co/{OUTPUT_REPO}/blob/main/{upload_path}"
except Exception as e:
status += f"\nUpload failed: {e}"
return temp_file.name, status
except Exception as e:
return None, f"Error: {str(e)}"
finally:
# Move back to CPU to free GPU memory
model.to("cpu")
snac.to("cpu")
torch.cuda.empty_cache()
# Create Gradio interface
with gr.Blocks(title="Mongolian TTS (ZeroGPU)") as demo:
gr.Markdown(f"""
# 🎤 Mongolian Text-to-Speech
Orpheus TTS model fine-tuned for Mongolian language.
**Model:** {MODEL_REPO}/{SUBFOLDER}
Using HuggingFace ZeroGPU (FREE!)
""")
with gr.Row():
with gr.Column():
text_input = gr.Textbox(
label="Text (Mongolian)",
placeholder="Энд монгол текст бичнэ үү...",
lines=3,
)
with gr.Row():
temperature = gr.Slider(0.1, 1.5, value=0.7, label="Temperature")
top_p = gr.Slider(0.1, 1.0, value=0.9, label="Top P")
max_tokens = gr.Slider(512, 8192, value=4096, step=512, label="Max Tokens")
upload_checkbox = gr.Checkbox(label="Upload to HuggingFace", value=True)
generate_btn = gr.Button("🎵 Generate Speech", variant="primary")
with gr.Column():
audio_output = gr.Audio(label="Generated Audio", type="filepath")
status_output = gr.Textbox(label="Status", lines=3)
generate_btn.click(
fn=generate_speech,
inputs=[text_input, temperature, top_p, max_tokens, upload_checkbox],
outputs=[audio_output, status_output],
)
gr.Examples(
examples=[
["Сайн байна уу, энэ бол монгол хэлний туршилт юм."],
["Өнөөдөр цаг агаар сайхан байна."],
["Дэд бүтэц, нийгмийн үйлчилгээний хүрээнд ч томоохон бүтээн байгуулалтууд хийгдэх юм."],
],
inputs=[text_input],
)
demo.launch()