test_wprm3 / process_run.py
iruno's picture
Upload 245 files
498ffec verified
from pathlib import Path
import multiprocessing
import logging
from PIL import Image
import io
import base64
import numpy as np
import gymnasium as gym
import os
from agent.checklist import generate_checklist
from agent.reward import get_ar_reward
from browser_agent import BrowserAgent
logger = logging.getLogger(__name__)
logger.setLevel('INFO')
templates_dir = Path(__file__).parent / "templates"
CSS_RM_CARDS: str = (templates_dir / "rm_cards.css").read_text()
CSS_TRAJECTORY: str = (templates_dir / "trajectory.css").read_text()
CARD_HTML_TEMPLATE: str = (templates_dir / "card.html").read_text()
RM_BASE_URL = os.environ['RM_BASE_URL']
RM_MODEL_NAME = os.environ['RM_MODEL_NAME']
def return_state(state, screenshot=None):
return state, None, None, screenshot, None
def run_agent(instruction: str, model_name: str = "gpt-4o", start_url: str = "about:blank",
use_html: bool = False, use_axtree: bool = True, use_screenshot: bool = False, max_steps: int = 20):
logger.info(f"Starting agent with instruction: {instruction}")
logger.info(f"Configuration: model={model_name}, start_url={start_url}")
trajectory = []
trajectory_str = ''
agent = BrowserAgent(
model_name=model_name,
use_html=use_html,
use_axtree=use_axtree,
use_screenshot=use_screenshot
)
# Initialize BrowserGym environment
logger.info("Initializing BrowserGym environment")
yield return_state("## Initializing BrowserGym environment...", None)
env = gym.make(
"browsergym/openended",
task_kwargs={
"start_url": start_url,
"goal": instruction,
},
wait_for_user_message=True
)
obs, info = env.reset()
logger.info("Environment initialized")
# Send user instruction to the environment
logger.info("Sending user instruction to environment")
obs, reward, terminated, truncated, info = env.step({
"type": "send_msg_to_user",
"message": instruction
})
processed_obs = agent.obs_preprocessor(obs)
logger.info(f"Obs: {processed_obs.keys()}")
logger.info(f"axtree_txt: {processed_obs['axtree_txt']}")
yield return_state("## Generating checklist...", obs['som_screenshot'])
checklist = generate_checklist(intent=instruction, start_url=start_url, text_observation=processed_obs['axtree_txt'])
# yield initial state
current_screenshot = obs['som_screenshot'].copy()
yield "## Rollout actions from policy...", checklist, [], current_screenshot, trajectory.copy()
try:
step_count = 0
while step_count < max_steps:
logger.info(f"Step {step_count}: Getting next action")
# Get next action from agent
candidates, _ = agent.get_action(processed_obs)
yield return_state(f"## Rewarding actions...", current_screenshot)
total_rewards, total_thoughts = get_ar_reward(
dataset=[
{
'text_observation': processed_obs['axtree_txt'],
'intent': instruction,
'trajectory': trajectory_str,
'current_url': processed_obs['open_pages_urls'][processed_obs['active_page_index'][0]],
'checklist': checklist,
'thought': cand['thought'],
'action': cand['action'],
} for cand in candidates
],
base_url=RM_BASE_URL,
model_name=RM_MODEL_NAME,
)
# process rewards
diff_reward = abs(max(total_rewards) - total_rewards[0]) # reward difference between actions with the highest reward and the most frequent.
if diff_reward <= 0.01:
logger.info(f"diff_reward: {diff_reward} -> most frequent action")
max_index = 0 # most frequent action
else:
logger.info(f"diff_reward: {diff_reward} -> highest reward")
max_index = total_rewards.index(max(total_rewards)) # highest reward
# sort by reward
sorted_indices = sorted(list(enumerate(total_rewards)), key=lambda x: (-1 if x[0] == max_index else 0, -x[1]))
new_order = [idx for idx, _ in sorted_indices]
candidates = [candidates[idx] for idx in new_order]
total_rewards = [total_rewards[idx] for idx in new_order]
total_thoughts = [total_thoughts[idx] for idx in new_order]
best_cand = candidates[0]
agent.action_history.append(best_cand['response'])
action = best_cand['action']
# processing action
step_info = {
'thought': best_cand['thought'],
'action': action
}
current_cards = [{'thought': cand['thought'], 'action': cand['action'], 'feedback': feedback, 'reward': round(reward, 2)} for idx, (cand, reward, feedback) in enumerate(zip(candidates, total_rewards, total_thoughts))]
trajectory_str += f'THOUGHT {step_count+1}: {step_info["thought"]}\nACTION {step_count+1}: {step_info["action"]}\n\n'
# Execute action
logger.info(f"Step {step_count}: Executing action: {action}")
yield f"## Executing action: {action}", checklist, current_cards, current_screenshot, trajectory.copy()
if action.startswith('send_msg_to_user'):
terminated = True
truncated = False
else:
obs, reward, terminated, truncated, info = env.step(action)
trajectory.append((processed_obs['som_screenshot'], [{'action': cand['action'], 'reward': round(reward, 2)} for cand, reward in zip(candidates, total_rewards)]))
processed_obs = agent.obs_preprocessor(obs)
current_screenshot = processed_obs['som_screenshot'].copy()
while '\n\n' in step_info['thought']:
step_info['thought'] = step_info['thought'].replace('\n\n', '\n')
# trajectory에 numpy array 직접 저장
logger.info(f"Step {step_count}: Saved screenshot and updated trajectory")
step_count += 1
# yield by each step
yield "## Rollout actions from policy...", checklist, current_cards, current_screenshot, trajectory.copy()
if terminated or truncated:
logger.info(f"Episode ended: terminated={terminated}, truncated={truncated}")
yield return_state("## Episode ended", current_screenshot)
break
finally:
logger.info("Finished")
def run_agent_worker(instruction, model_name, start_url, use_html, use_axtree, use_screenshot, max_steps, return_queue):
"""Worker function that runs the agent in a separate process and puts results in a queue."""
try:
for result in run_agent(instruction, model_name, start_url, use_html, use_axtree, use_screenshot, max_steps):
return_queue.put(result)
except Exception as e:
logger.error(f"Error in agent worker process: {e}")
return_queue.put(("Error occurred in agent process", [], None, []))
import traceback
traceback.print_exc()
finally:
# Signal that the process is done
return_queue.put(None)
def run_agent_wrapper(instruction, model_name="gpt-4o", start_url="about:blank",
use_html=False, use_axtree=True, use_screenshot=False, max_steps=20):
"""Wrapper function that runs the agent in a separate process and yields results."""
return_queue = multiprocessing.Queue()
# Start the agent in a separate process
p = multiprocessing.Process(
target=run_agent_worker,
args=(instruction, model_name, start_url, use_html, use_axtree, use_screenshot, max_steps, return_queue)
)
p.daemon = True # Ensure process terminates when parent terminates
p.start()
# Get results from the queue and yield them
while True:
result = return_queue.get()
if result is None: # End signal
break
yield result
# Clean up
if p.is_alive():
p.terminate()
p.join()
def process_run(instruction, model_name, start_url):
# Use the wrapper function instead of directly calling run_agent
trajectory_generator = run_agent_wrapper(
instruction,
model_name,
start_url,
use_html=False,
use_axtree=True,
use_screenshot=False
)
all_trajectory = []
last_checklist_view, last_trajectory_html = None, None
for state, checklist_view, rm_cards, screenshot, trajectory in trajectory_generator:
if checklist_view is None:
yield state, screenshot, last_checklist_view, None, last_trajectory_html
continue
# Create HTML for reward model cards
rm_cards_html = f"""
<style>
{CSS_RM_CARDS}
</style>
<div class="rm-cards-container">
"""
for idx, card in enumerate(rm_cards):
rm_cards_html += CARD_HTML_TEMPLATE.format(
additional_class='top-candidate' if idx == 0 else '',
k=idx+1,
suffix='(best)' if idx == 0 else '',
thought=card['thought'],
action=card['action'],
reward=card['reward'],
feedback=card['feedback']
)
rm_cards_html += "</div>"
all_trajectory = trajectory
# Create HTML for trajectory display
trajectory_html = f"""
<style>
{CSS_TRAJECTORY}
</style>
<div class="trajectory-container">
"""
for idx, (after_img, cands) in enumerate(all_trajectory):
# Convert image to base64 if needed
img = all_trajectory[idx][0]
if isinstance(img, np.ndarray):
img = Image.fromarray(img)
if isinstance(img, Image.Image):
buffer = io.BytesIO()
img.save(buffer, format="JPEG")
img_str = base64.b64encode(buffer.getvalue()).decode()
img_src = f"data:image/jpeg;base64,{img_str}"
else:
img_src = img
trajectory_html += f"""
<div class="step-container">
<div class="step-header">Step {idx + 1}</div>
<div class="step-content">
<div class="step-image">
<img src="{img_src}" alt="Browser state">
</div>
<div class="step-info">
<div class="box-title">Action Candidates:</div>
<div class="action-candidates">
"""
# Display all candidates for this step
for i, cand in enumerate(cands):
action = cand['action']
reward = cand['reward']
trajectory_html += f"""
<div class="candidate-box{' selected' if i == 0 else ''}">
<div class="box-title">
Action {i+1}{' (Selected)' if i == 0 else ''}
<span class="reward-text">Reward: {reward}</span>
</div>
<pre>{action}</pre>
</div>
"""
trajectory_html += """
</div>
</div>
</div>
</div>
"""
trajectory_html += "</div>"
last_checklist_view, last_trajectory_html = checklist_view, trajectory_html
yield state, screenshot, last_checklist_view, rm_cards_html, last_trajectory_html
yield state, screenshot, last_checklist_view, rm_cards_html, last_trajectory_html