irfantea commited on
Commit
2a4ce38
1 Parent(s): 28e1511

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +35 -6
app.py CHANGED
@@ -17,12 +17,15 @@ login(token = os.environ['hf_token'])
17
  dataset = load_dataset("irfantea/collections", data_files='Kombinasi.csv', split='train')
18
  df = dataset.to_pandas()
19
 
20
- @st.cache_data
21
  def load_data():
 
22
  df["First name"] = df["First name"].astype("string")
23
  df["Grade/100.00 (Simulasi)"] = df["Grade/100.00 (Simulasi)"].astype(float)
24
  df["Grade/100.00 (Ujian 1)"] = df["Grade/100.00 (Ujian 1)"].astype(float)
25
- df["Persentase Ujian 1 (15%)"] = (df["Grade/100.00 (Ujian 1)"].astype(float) * 0.15).round(2)
 
 
26
  return df
27
 
28
  df = load_data()
@@ -30,9 +33,8 @@ df = load_data()
30
  def cari_npm(npm):
31
  df_cari = df[df["First name"] == npm]
32
  return df_cari
33
-
34
  def susun_data(data_npm):
35
- columns_to_display = ["Surname", "First name", "Grade/100.00 (Ujian 1)", "Persentase Ujian 1 (15%)"]
36
  st.table(data_npm[columns_to_display])
37
 
38
  colors = ['red', 'green', 'blue']
@@ -57,9 +59,36 @@ with kolom1:
57
  plt.xlabel('Rentang')
58
  plt.ylabel('Jumlah Mahasiswa')
59
  st.pyplot(plt)
 
 
 
 
 
 
 
 
 
 
 
 
60
 
61
- with kolom2:
62
- st.write("Ujian 2")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
 
64
  with kolom3:
65
  st.write("Ujian Final")
 
17
  dataset = load_dataset("irfantea/collections", data_files='Kombinasi.csv', split='train')
18
  df = dataset.to_pandas()
19
 
20
+ #@st.cache_data
21
  def load_data():
22
+ df = pd.read_csv("Kombinasi.csv")
23
  df["First name"] = df["First name"].astype("string")
24
  df["Grade/100.00 (Simulasi)"] = df["Grade/100.00 (Simulasi)"].astype(float)
25
  df["Grade/100.00 (Ujian 1)"] = df["Grade/100.00 (Ujian 1)"].astype(float)
26
+ df["Grade/100.00 (Ujian 2)"] = df["Grade/100.00 (Ujian 2)"].astype(float)
27
+ df["Ujian 1 (15%)"] = (df["Grade/100.00 (Ujian 1)"].astype(float) * 0.15).round(2)
28
+ df["Ujian 2 (30%)"] = (df["Grade/100.00 (Ujian 2)"].astype(float) * 0.30).round(2)
29
  return df
30
 
31
  df = load_data()
 
33
  def cari_npm(npm):
34
  df_cari = df[df["First name"] == npm]
35
  return df_cari
 
36
  def susun_data(data_npm):
37
+ columns_to_display = ["Surname", "First name", "Grade/100.00 (Ujian 1)", "Ujian 1 (15%)", "Grade/100.00 (Ujian 2)", "Ujian 2 (30%)"]
38
  st.table(data_npm[columns_to_display])
39
 
40
  colors = ['red', 'green', 'blue']
 
59
  plt.xlabel('Rentang')
60
  plt.ylabel('Jumlah Mahasiswa')
61
  st.pyplot(plt)
62
+ average = df["Grade/100.00 (Ujian 1)"].mean()
63
+ median = df["Grade/100.00 (Ujian 1)"].median()
64
+ stdev = df["Grade/100.00 (Ujian 1)"].std()
65
+ st.info("Mean: " + str(average))
66
+ st.info("Median: " + str(median))
67
+ st.info("STDev: " + str(stdev))
68
+
69
+ with kolom2:
70
+ grades = df["Grade/100.00 (Ujian 2)"]
71
+ count_below_50 = (grades < 50).sum()
72
+ count_50_to_68 = ((grades >= 50) & (grades <= 68)).sum()
73
+ count_above_68 = (grades > 68).sum()
74
 
75
+ data = {
76
+ 'Category': ['Below 50', '50 - 68', 'Above 68'],
77
+ 'Count': [count_below_50, count_50_to_68, count_above_68]
78
+ }
79
+ df_counts = pd.DataFrame(data)
80
+ st.write("Ujian 2")
81
+ plt.clf() # Clear the current figure
82
+ plt.bar(df_counts['Category'], df_counts['Count'], color=colors)
83
+ plt.xlabel('Rentang')
84
+ plt.ylabel('Jumlah Mahasiswa')
85
+ st.pyplot(plt)
86
+ average = df["Grade/100.00 (Ujian 2)"].mean()
87
+ median = df["Grade/100.00 (Ujian 2)"].median()
88
+ stdev = df["Grade/100.00 (Ujian 2)"].std()
89
+ st.info("Mean: " + str(average))
90
+ st.info("Median: " + str(median))
91
+ st.info("STDev: " + str(stdev))
92
 
93
  with kolom3:
94
  st.write("Ujian Final")