Health-Bot / app.py
iqrabatool's picture
Update app.py
236508f verified
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import os
# Get the value of the HF_TOKEN environment variable
token = os.environ.get('HF_TOKEN')
# Load model and tokenizer from Hugging Face
model_name = "iqrabatool/finetuned_LLaMA"
# Define a smaller subset of the model or load a smaller version if available
model = AutoModelForCausalLM.from_pretrained(model_name, token=token)
tokenizer = AutoTokenizer.from_pretrained(model_name, token=token)
def respond(message, system_message, max_tokens, temperature, top_p):
# Generate response
inputs = tokenizer(message, return_tensors="pt", max_length=max_tokens, truncation=True, padding=True)
outputs = model.generate(**inputs, temperature=temperature, top_p=top_p)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
# Define simplified interface components
additional_inputs = [
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=512, value=256, step=1, label="Max new tokens"), # Limit max tokens
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"), # Reduce temperature range
gr.Slider(minimum=0.1, maximum=0.9, value=0.5, step=0.05, label="Top-p (nucleus sampling)"), # Reduce top-p range
]
# Create the simplified ChatInterface
demo = gr.Interface(
fn=respond,
inputs=["text", "text", "number", "number", "number"],
outputs="text",
title="Health Bot",
description="A simplified chatbot for health-related inquiries.",
article="The Health Bot assists users with health-related questions and provides information based on a pre-trained language model.",
examples=[["What are the symptoms of COVID-19?", "Health Bot: COVID-19 symptoms include..."]],
additional_inputs=additional_inputs
)
if __name__ == "__main__":
demo.launch()