Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import os | |
# Get the value of the HF_TOKEN environment variable | |
token = os.environ.get('HF_TOKEN') | |
# Load model and tokenizer from Hugging Face | |
model_name = "iqrabatool/finetuned_LLaMA" | |
# Define a smaller subset of the model or load a smaller version if available | |
model = AutoModelForCausalLM.from_pretrained(model_name, token=token) | |
tokenizer = AutoTokenizer.from_pretrained(model_name, token=token) | |
def respond(message, system_message, max_tokens, temperature, top_p): | |
# Generate response | |
inputs = tokenizer(message, return_tensors="pt", max_length=max_tokens, truncation=True, padding=True) | |
outputs = model.generate(**inputs, temperature=temperature, top_p=top_p) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response | |
# Define simplified interface components | |
additional_inputs = [ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=512, value=256, step=1, label="Max new tokens"), # Limit max tokens | |
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"), # Reduce temperature range | |
gr.Slider(minimum=0.1, maximum=0.9, value=0.5, step=0.05, label="Top-p (nucleus sampling)"), # Reduce top-p range | |
] | |
# Create the simplified ChatInterface | |
demo = gr.Interface( | |
fn=respond, | |
inputs=["text", "text", "number", "number", "number"], | |
outputs="text", | |
title="Health Bot", | |
description="A simplified chatbot for health-related inquiries.", | |
article="The Health Bot assists users with health-related questions and provides information based on a pre-trained language model.", | |
examples=[["What are the symptoms of COVID-19?", "Health Bot: COVID-19 symptoms include..."]], | |
additional_inputs=additional_inputs | |
) | |
if __name__ == "__main__": | |
demo.launch() | |