Spaces:
Running
Running
from typing import List, Dict, Any | |
import json | |
import torch | |
import os | |
# Disable xformers for CPU compatibility with Stella models | |
os.environ["XFORMERS_DISABLED"] = "1" | |
import gradio as gr | |
from fastapi import FastAPI | |
from fastapi.responses import JSONResponse | |
from sentence_transformers import SentenceTransformer | |
# Device detection - use GPU if available, otherwise CPU | |
def get_device(): | |
if torch.cuda.is_available(): | |
print("🚀 GPU detected - using CUDA for acceleration") | |
return 'cuda' | |
else: | |
print("💻 Using CPU for inference") | |
return 'cpu' | |
DEVICE = get_device() | |
# Available models | |
MODELS = { | |
"nomic-ai/nomic-embed-text-v1.5": {"trust_remote_code": True}, | |
"nomic-ai/nomic-embed-text-v1": {"trust_remote_code": True}, | |
"mixedbread-ai/mxbai-embed-large-v1": {"trust_remote_code": False}, | |
"BAAI/bge-m3": {"trust_remote_code": False}, | |
"sentence-transformers/all-MiniLM-L6-v2": {"trust_remote_code": False}, | |
"sentence-transformers/all-mpnet-base-v2": {"trust_remote_code": False}, | |
"Snowflake/snowflake-arctic-embed-m": {"trust_remote_code": False}, | |
"Snowflake/snowflake-arctic-embed-l": {"trust_remote_code": False}, | |
"Snowflake/snowflake-arctic-embed-m-long": {"trust_remote_code": True}, | |
"Snowflake/snowflake-arctic-embed-m-v2.0": {"trust_remote_code": False}, | |
"BAAI/bge-large-en-v1.5": {"trust_remote_code": False}, | |
"BAAI/bge-base-en-v1.5": {"trust_remote_code": False}, | |
"BAAI/bge-small-en-v1.5": {"trust_remote_code": False}, | |
"sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2": {"trust_remote_code": False}, | |
"ibm-granite/granite-embedding-30m-english": {"trust_remote_code": False}, | |
"ibm-granite/granite-embedding-278m-multilingual": {"trust_remote_code": False}, | |
"Qwen/Qwen3-Embedding-0.6B": {"trust_remote_code": False}, | |
"Qwen/Qwen3-Embedding-4B": {"trust_remote_code": False}, | |
"Qwen/Qwen3-Embedding-8B": {"trust_remote_code": False}, | |
"dunzhang/stella_en_400M_v5": {"trust_remote_code": True}, | |
"dunzhang/stella_en_1.5B_v5": {"trust_remote_code": True}, | |
"infgrad/stella-base-en-v2": {"trust_remote_code": True}, | |
"nvidia/NV-Embed-v2": {"trust_remote_code": True}, | |
"Alibaba-NLP/gte-Qwen2-7B-instruct": {"trust_remote_code": False}, | |
"Alibaba-NLP/gte-Qwen2-1.5B-instruct": {"trust_remote_code": False}, | |
"intfloat/multilingual-e5-large-instruct": {"trust_remote_code": False}, | |
"intfloat/multilingual-e5-large": {"trust_remote_code": False}, | |
"BAAI/bge-en-icl": {"trust_remote_code": False}, | |
} | |
# Model cache - keep only one model loaded at a time | |
current_model = None | |
current_model_name = "nomic-ai/nomic-embed-text-v1.5" | |
# Initialize default model | |
def load_model(model_name: str): | |
global current_model, current_model_name | |
# If requesting the same model that's already loaded, return it | |
if current_model is not None and current_model_name == model_name: | |
return current_model | |
# Unload the previous model if it exists | |
if current_model is not None: | |
del current_model | |
current_model = None | |
# Load the new model | |
trust_remote_code = MODELS.get(model_name, {}).get("trust_remote_code", False) | |
try: | |
print(f"Loading model '{model_name}' on {DEVICE}") | |
current_model = SentenceTransformer( | |
model_name, | |
trust_remote_code=trust_remote_code, | |
device=DEVICE | |
) | |
current_model_name = model_name | |
print(f"✅ Model '{model_name}' loaded successfully on {DEVICE}") | |
except Exception as e: | |
raise ValueError(f"Failed to load model '{model_name}': {str(e)}") | |
return current_model | |
# Load default model | |
model = load_model(current_model_name) | |
# Create FastAPI app | |
fastapi_app = FastAPI() | |
def embed(document: str, model_name: str = None): | |
if model_name: | |
try: | |
selected_model = load_model(model_name) | |
return selected_model.encode(document) | |
except Exception as e: | |
raise ValueError(f"Error with model '{model_name}': {str(e)}") | |
return model.encode(document) | |
# FastAPI endpoints | |
async def embed_text(data: Dict[str, Any]): | |
"""Direct API endpoint for text embedding without queue""" | |
try: | |
text = data.get("text", "") | |
model_name = data.get("model", current_model_name) | |
if not text: | |
return JSONResponse( | |
status_code=400, | |
content={"error": "No text provided"} | |
) | |
# Allow any model but warn about trust_remote_code | |
if model_name not in MODELS: | |
trust_remote_code = False | |
else: | |
trust_remote_code = MODELS[model_name].get("trust_remote_code", False) | |
# Generate embedding | |
embedding = embed(text, model_name) | |
return JSONResponse( | |
content={ | |
"embedding": embedding.tolist(), | |
"dim": len(embedding), | |
"model": model_name, | |
"trust_remote_code": trust_remote_code, | |
"predefined": model_name in MODELS | |
} | |
) | |
except Exception as e: | |
return JSONResponse( | |
status_code=500, | |
content={"error": str(e)} | |
) | |
async def list_models(): | |
"""List available embedding models""" | |
return JSONResponse( | |
content={ | |
"models": list(MODELS.keys()), | |
"default": current_model_name | |
} | |
) | |
with gr.Blocks(title="Multi-Model Text Embeddings", css=""" | |
.json-holder { | |
max-height: 400px !important; | |
overflow-y: auto !important; | |
} | |
.json-holder .wrap { | |
max-height: 400px !important; | |
overflow-y: auto !important; | |
} | |
""") as app: | |
gr.Markdown("# Multi-Model Text Embeddings") | |
gr.Markdown("Generate embeddings for your text using 28+ state-of-the-art embedding models including top MTEB performers like NV-Embed-v2, gte-Qwen2-7B-instruct, Nomic, BGE, Snowflake, IBM Granite, Qwen3, Stella, and more.") | |
gr.Markdown(f"**Device**: {DEVICE.upper()} {'🚀' if DEVICE == 'cuda' else '💻'}") | |
# Model selector dropdown (allows custom input) | |
model_dropdown = gr.Dropdown( | |
choices=list(MODELS.keys()), | |
value=current_model_name, | |
label="Select Embedding Model", | |
info="Choose from predefined models or enter any Hugging Face model name", | |
allow_custom_value=True | |
) | |
# Create an input text box | |
text_input = gr.Textbox(label="Enter text to embed", placeholder="Type or paste your text here...") | |
# Create an output component to display the embedding | |
output = gr.JSON(label="Text Embedding", elem_classes=["json-holder"]) | |
# Add a submit button with API name | |
submit_btn = gr.Button("Generate Embedding", variant="primary") | |
# Handle both button click and text submission | |
submit_btn.click(embed, inputs=[text_input, model_dropdown], outputs=output, api_name="predict") | |
text_input.submit(embed, inputs=[text_input, model_dropdown], outputs=output) | |
# Add API usage guide | |
gr.Markdown("## API Usage") | |
gr.Markdown(""" | |
You can use this API in two ways: via the direct FastAPI endpoint or through Gradio clients. | |
**Security Note**: Only predefined models allow `trust_remote_code=True`. Any other Hugging Face model will use `trust_remote_code=False` for security. | |
### List Available Models | |
```bash | |
curl https://ipepe-nomic-embeddings.hf.space/models | |
``` | |
### Direct API Endpoint (No Queue!) | |
```bash | |
# Default model (nomic-ai/nomic-embed-text-v1.5) | |
curl -X POST https://ipepe-nomic-embeddings.hf.space/embed \ | |
-H "Content-Type: application/json" \ | |
-d '{"text": "Your text to embed goes here"}' | |
# With predefined model (trust_remote_code allowed) | |
curl -X POST https://ipepe-nomic-embeddings.hf.space/embed \ | |
-H "Content-Type: application/json" \ | |
-d '{"text": "Your text to embed goes here", "model": "sentence-transformers/all-MiniLM-L6-v2"}' | |
# With any Hugging Face model (trust_remote_code=False for security) | |
curl -X POST https://ipepe-nomic-embeddings.hf.space/embed \ | |
-H "Content-Type: application/json" \ | |
-d '{"text": "Your text to embed goes here", "model": "intfloat/e5-base-v2"}' | |
``` | |
Response format: | |
```json | |
{ | |
"embedding": [0.123, -0.456, ...], | |
"dim": 384, | |
"model": "sentence-transformers/all-MiniLM-L6-v2", | |
"trust_remote_code": false, | |
"predefined": true | |
} | |
``` | |
### Python Example (Direct API) | |
```python | |
import requests | |
# List available models | |
models = requests.get("https://ipepe-nomic-embeddings.hf.space/models").json() | |
print(models["models"]) | |
# Generate embedding with specific model | |
response = requests.post( | |
"https://ipepe-nomic-embeddings.hf.space/embed", | |
json={ | |
"text": "Your text to embed goes here", | |
"model": "BAAI/bge-small-en-v1.5" | |
} | |
) | |
result = response.json() | |
embedding = result["embedding"] | |
``` | |
### Python Example (Gradio Client) | |
```python | |
from gradio_client import Client | |
client = Client("ipepe/nomic-embeddings") | |
result = client.predict( | |
"Your text to embed goes here", | |
"nomic-ai/nomic-embed-text-v1.5", # model selection | |
api_name="/predict" | |
) | |
print(result) # Returns the embedding array | |
``` | |
### Available Models | |
- `nomic-ai/nomic-embed-text-v1.5` (default) - High-performing open embedding model with large token context | |
- `nomic-ai/nomic-embed-text-v1` - Previous version of Nomic embedding model | |
- `mixedbread-ai/mxbai-embed-large-v1` - State-of-the-art large embedding model from mixedbread.ai | |
- `BAAI/bge-m3` - Multi-functional, multi-lingual, multi-granularity embedding model | |
- `sentence-transformers/all-MiniLM-L6-v2` - Fast, small embedding model for general use | |
- `sentence-transformers/all-mpnet-base-v2` - Balanced performance embedding model | |
- `Snowflake/snowflake-arctic-embed-m` - Medium-sized Arctic embedding model | |
- `Snowflake/snowflake-arctic-embed-l` - Large Arctic embedding model | |
- `Snowflake/snowflake-arctic-embed-m-long` - Medium Arctic model optimized for long context | |
- `Snowflake/snowflake-arctic-embed-m-v2.0` - Latest Arctic embedding with multilingual support | |
- `BAAI/bge-large-en-v1.5` - Large BGE embedding model for English | |
- `BAAI/bge-base-en-v1.5` - Base BGE embedding model for English | |
- `BAAI/bge-small-en-v1.5` - Small BGE embedding model for English | |
- `sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2` - Multilingual paraphrase model | |
- `ibm-granite/granite-embedding-30m-english` - IBM Granite 30M English embedding model | |
- `ibm-granite/granite-embedding-278m-multilingual` - IBM Granite 278M multilingual embedding model | |
""") | |
if __name__ == '__main__': | |
# Mount FastAPI app to Gradio | |
app = gr.mount_gradio_app(fastapi_app, app, path="/") | |
# Run with Uvicorn (Gradio uses this internally) | |
import uvicorn | |
uvicorn.run(app, host="0.0.0.0", port=7860) |