Spaces:
Running
Running
| from typing import List, Dict, Any | |
| import json | |
| import gradio as gr | |
| from fastapi import FastAPI | |
| from fastapi.responses import JSONResponse | |
| from sentence_transformers import SentenceTransformer | |
| # Available models | |
| MODELS = { | |
| "nomic-ai/nomic-embed-text-v1.5": {"trust_remote_code": True}, | |
| "nomic-ai/nomic-embed-text-v1": {"trust_remote_code": True}, | |
| "mixedbread-ai/mxbai-embed-large-v1": {"trust_remote_code": False}, | |
| "BAAI/bge-m3": {"trust_remote_code": False}, | |
| "sentence-transformers/all-MiniLM-L6-v2": {"trust_remote_code": False}, | |
| "sentence-transformers/all-mpnet-base-v2": {"trust_remote_code": False}, | |
| "Snowflake/snowflake-arctic-embed-m": {"trust_remote_code": False}, | |
| "Snowflake/snowflake-arctic-embed-l": {"trust_remote_code": False}, | |
| "Snowflake/snowflake-arctic-embed-m-long": {"trust_remote_code": True}, | |
| "Snowflake/snowflake-arctic-embed-m-v2.0": {"trust_remote_code": False}, | |
| "BAAI/bge-large-en-v1.5": {"trust_remote_code": False}, | |
| "BAAI/bge-base-en-v1.5": {"trust_remote_code": False}, | |
| "BAAI/bge-small-en-v1.5": {"trust_remote_code": False}, | |
| "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2": {"trust_remote_code": False}, | |
| "ibm-granite/granite-embedding-30m-english": {"trust_remote_code": False}, | |
| "ibm-granite/granite-embedding-278m-multilingual": {"trust_remote_code": False}, | |
| "Qwen/Qwen3-Embedding-0.6B": {"trust_remote_code": False}, | |
| "Qwen/Qwen3-Embedding-4B": {"trust_remote_code": False}, | |
| "Qwen/Qwen3-Embedding-8B": {"trust_remote_code": False}, | |
| "dunzhang/stella_en_400M_v5": {"trust_remote_code": True}, | |
| "dunzhang/stella_en_1.5B_v5": {"trust_remote_code": True}, | |
| "infgrad/stella-base-en-v2": {"trust_remote_code": True}, | |
| "nvidia/NV-Embed-v2": {"trust_remote_code": True}, | |
| "Alibaba-NLP/gte-Qwen2-7B-instruct": {"trust_remote_code": False}, | |
| "Alibaba-NLP/gte-Qwen2-1.5B-instruct": {"trust_remote_code": False}, | |
| "intfloat/multilingual-e5-large-instruct": {"trust_remote_code": False}, | |
| "intfloat/multilingual-e5-large": {"trust_remote_code": False}, | |
| "BAAI/bge-en-icl": {"trust_remote_code": False}, | |
| } | |
| # Model cache - keep only one model loaded at a time | |
| current_model = None | |
| current_model_name = "nomic-ai/nomic-embed-text-v1.5" | |
| # Initialize default model | |
| def load_model(model_name: str): | |
| global current_model, current_model_name | |
| # If requesting the same model that's already loaded, return it | |
| if current_model is not None and current_model_name == model_name: | |
| return current_model | |
| # Unload the previous model if it exists | |
| if current_model is not None: | |
| del current_model | |
| current_model = None | |
| # Load the new model | |
| trust_remote_code = MODELS.get(model_name, {}).get("trust_remote_code", False) | |
| try: | |
| current_model = SentenceTransformer( | |
| model_name, | |
| trust_remote_code=trust_remote_code, | |
| device='cpu' | |
| ) | |
| current_model_name = model_name | |
| except Exception as e: | |
| raise ValueError(f"Failed to load model '{model_name}': {str(e)}") | |
| return current_model | |
| # Load default model | |
| model = load_model(current_model_name) | |
| # Create FastAPI app | |
| fastapi_app = FastAPI() | |
| def embed(document: str, model_name: str = None): | |
| if model_name: | |
| try: | |
| selected_model = load_model(model_name) | |
| return selected_model.encode(document) | |
| except Exception as e: | |
| raise ValueError(f"Error with model '{model_name}': {str(e)}") | |
| return model.encode(document) | |
| # FastAPI endpoints | |
| async def embed_text(data: Dict[str, Any]): | |
| """Direct API endpoint for text embedding without queue""" | |
| try: | |
| text = data.get("text", "") | |
| model_name = data.get("model", current_model_name) | |
| if not text: | |
| return JSONResponse( | |
| status_code=400, | |
| content={"error": "No text provided"} | |
| ) | |
| # Allow any model but warn about trust_remote_code | |
| if model_name not in MODELS: | |
| trust_remote_code = False | |
| else: | |
| trust_remote_code = MODELS[model_name].get("trust_remote_code", False) | |
| # Generate embedding | |
| embedding = embed(text, model_name) | |
| return JSONResponse( | |
| content={ | |
| "embedding": embedding.tolist(), | |
| "dim": len(embedding), | |
| "model": model_name, | |
| "trust_remote_code": trust_remote_code, | |
| "predefined": model_name in MODELS | |
| } | |
| ) | |
| except Exception as e: | |
| return JSONResponse( | |
| status_code=500, | |
| content={"error": str(e)} | |
| ) | |
| async def list_models(): | |
| """List available embedding models""" | |
| return JSONResponse( | |
| content={ | |
| "models": list(MODELS.keys()), | |
| "default": current_model_name | |
| } | |
| ) | |
| with gr.Blocks(title="Multi-Model Text Embeddings", css=""" | |
| .json-holder { | |
| max-height: 400px !important; | |
| overflow-y: auto !important; | |
| } | |
| .json-holder .wrap { | |
| max-height: 400px !important; | |
| overflow-y: auto !important; | |
| } | |
| """) as app: | |
| gr.Markdown("# Multi-Model Text Embeddings") | |
| gr.Markdown("Generate embeddings for your text using 28+ state-of-the-art embedding models including top MTEB performers like NV-Embed-v2, gte-Qwen2-7B-instruct, Nomic, BGE, Snowflake, IBM Granite, Qwen3, Stella, and more.") | |
| # Model selector dropdown (allows custom input) | |
| model_dropdown = gr.Dropdown( | |
| choices=list(MODELS.keys()), | |
| value=current_model_name, | |
| label="Select Embedding Model", | |
| info="Choose from predefined models or enter any Hugging Face model name", | |
| allow_custom_value=True | |
| ) | |
| # Create an input text box | |
| text_input = gr.Textbox(label="Enter text to embed", placeholder="Type or paste your text here...") | |
| # Create an output component to display the embedding | |
| output = gr.JSON(label="Text Embedding", elem_classes=["json-holder"]) | |
| # Add a submit button with API name | |
| submit_btn = gr.Button("Generate Embedding", variant="primary") | |
| # Handle both button click and text submission | |
| submit_btn.click(embed, inputs=[text_input, model_dropdown], outputs=output, api_name="predict") | |
| text_input.submit(embed, inputs=[text_input, model_dropdown], outputs=output) | |
| # Add API usage guide | |
| gr.Markdown("## API Usage") | |
| gr.Markdown(""" | |
| You can use this API in two ways: via the direct FastAPI endpoint or through Gradio clients. | |
| **Security Note**: Only predefined models allow `trust_remote_code=True`. Any other Hugging Face model will use `trust_remote_code=False` for security. | |
| ### List Available Models | |
| ```bash | |
| curl https://ipepe-nomic-embeddings.hf.space/models | |
| ``` | |
| ### Direct API Endpoint (No Queue!) | |
| ```bash | |
| # Default model (nomic-ai/nomic-embed-text-v1.5) | |
| curl -X POST https://ipepe-nomic-embeddings.hf.space/embed \ | |
| -H "Content-Type: application/json" \ | |
| -d '{"text": "Your text to embed goes here"}' | |
| # With predefined model (trust_remote_code allowed) | |
| curl -X POST https://ipepe-nomic-embeddings.hf.space/embed \ | |
| -H "Content-Type: application/json" \ | |
| -d '{"text": "Your text to embed goes here", "model": "sentence-transformers/all-MiniLM-L6-v2"}' | |
| # With any Hugging Face model (trust_remote_code=False for security) | |
| curl -X POST https://ipepe-nomic-embeddings.hf.space/embed \ | |
| -H "Content-Type: application/json" \ | |
| -d '{"text": "Your text to embed goes here", "model": "intfloat/e5-base-v2"}' | |
| ``` | |
| Response format: | |
| ```json | |
| { | |
| "embedding": [0.123, -0.456, ...], | |
| "dim": 384, | |
| "model": "sentence-transformers/all-MiniLM-L6-v2", | |
| "trust_remote_code": false, | |
| "predefined": true | |
| } | |
| ``` | |
| ### Python Example (Direct API) | |
| ```python | |
| import requests | |
| # List available models | |
| models = requests.get("https://ipepe-nomic-embeddings.hf.space/models").json() | |
| print(models["models"]) | |
| # Generate embedding with specific model | |
| response = requests.post( | |
| "https://ipepe-nomic-embeddings.hf.space/embed", | |
| json={ | |
| "text": "Your text to embed goes here", | |
| "model": "BAAI/bge-small-en-v1.5" | |
| } | |
| ) | |
| result = response.json() | |
| embedding = result["embedding"] | |
| ``` | |
| ### Python Example (Gradio Client) | |
| ```python | |
| from gradio_client import Client | |
| client = Client("ipepe/nomic-embeddings") | |
| result = client.predict( | |
| "Your text to embed goes here", | |
| "nomic-ai/nomic-embed-text-v1.5", # model selection | |
| api_name="/predict" | |
| ) | |
| print(result) # Returns the embedding array | |
| ``` | |
| ### Available Models | |
| - `nomic-ai/nomic-embed-text-v1.5` (default) - High-performing open embedding model with large token context | |
| - `nomic-ai/nomic-embed-text-v1` - Previous version of Nomic embedding model | |
| - `mixedbread-ai/mxbai-embed-large-v1` - State-of-the-art large embedding model from mixedbread.ai | |
| - `BAAI/bge-m3` - Multi-functional, multi-lingual, multi-granularity embedding model | |
| - `sentence-transformers/all-MiniLM-L6-v2` - Fast, small embedding model for general use | |
| - `sentence-transformers/all-mpnet-base-v2` - Balanced performance embedding model | |
| - `Snowflake/snowflake-arctic-embed-m` - Medium-sized Arctic embedding model | |
| - `Snowflake/snowflake-arctic-embed-l` - Large Arctic embedding model | |
| - `Snowflake/snowflake-arctic-embed-m-long` - Medium Arctic model optimized for long context | |
| - `Snowflake/snowflake-arctic-embed-m-v2.0` - Latest Arctic embedding with multilingual support | |
| - `BAAI/bge-large-en-v1.5` - Large BGE embedding model for English | |
| - `BAAI/bge-base-en-v1.5` - Base BGE embedding model for English | |
| - `BAAI/bge-small-en-v1.5` - Small BGE embedding model for English | |
| - `sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2` - Multilingual paraphrase model | |
| - `ibm-granite/granite-embedding-30m-english` - IBM Granite 30M English embedding model | |
| - `ibm-granite/granite-embedding-278m-multilingual` - IBM Granite 278M multilingual embedding model | |
| """) | |
| if __name__ == '__main__': | |
| # Mount FastAPI app to Gradio | |
| app = gr.mount_gradio_app(fastapi_app, app, path="/") | |
| # Run with Uvicorn (Gradio uses this internally) | |
| import uvicorn | |
| uvicorn.run(app, host="0.0.0.0", port=7860) |