|
|
import os |
|
|
from dotenv import load_dotenv |
|
|
import streamlit as st |
|
|
import pandas as pd |
|
|
import plotly.express as px |
|
|
import cloudscraper |
|
|
import warnings |
|
|
import logging |
|
|
|
|
|
load_dotenv() |
|
|
API_KEY = os.environ.get("API_KEY") |
|
|
headers = { |
|
|
"Authorization": f"Bearer {API_KEY}", |
|
|
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) " |
|
|
"AppleWebKit/537.36 (KHTML, like Gecko) " |
|
|
"Chrome/115.0.0.0 Safari/537.36" |
|
|
} |
|
|
|
|
|
url = "https://archeanvision.com/api/signals/available" |
|
|
|
|
|
|
|
|
scraper = cloudscraper.create_scraper() |
|
|
response = scraper.get(url, headers=headers) |
|
|
|
|
|
print(response.status_code) |
|
|
print(response.text) |
|
|
|
|
|
|
|
|
load_dotenv() |
|
|
|
|
|
|
|
|
warnings.filterwarnings( |
|
|
"ignore", |
|
|
message="Please replace `st.experimental_get_query_params` with `st.query_params`" |
|
|
) |
|
|
warnings.filterwarnings( |
|
|
"ignore", |
|
|
message="Please replace `st.experimental_set_query_params` with `st.query_params`" |
|
|
) |
|
|
warnings.filterwarnings("ignore", category=DeprecationWarning) |
|
|
|
|
|
|
|
|
logging.getLogger("streamlit.deprecation").setLevel(logging.ERROR) |
|
|
logging.getLogger("streamlit.runtime.scriptrunner").setLevel(logging.ERROR) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
st.set_page_config( |
|
|
page_title="Dashboard Auto-Refresh", |
|
|
layout="wide" |
|
|
) |
|
|
|
|
|
REFRESH_INTERVAL = 260 |
|
|
st.markdown(f"<meta http-equiv='refresh' content='{REFRESH_INTERVAL}'>", unsafe_allow_html=True) |
|
|
|
|
|
|
|
|
LOGO_IMAGE_URL = "https://cdn.discordapp.com/attachments/1276553391748812800/1374489683769163827/image.png?ex=682e3cc5&is=682ceb45&hm=ca258b6323ea40faafe307c00e48a3841450ff34b05de452e3a0fb544909615f&" |
|
|
st.sidebar.image(LOGO_IMAGE_URL, use_container_width=True, caption="FrameWorx") |
|
|
|
|
|
|
|
|
if not API_KEY: |
|
|
st.error("API_KEY is not set. Please add it to your environment (e.g. .env file or Hugging Face Secrets).") |
|
|
st.stop() |
|
|
|
|
|
|
|
|
|
|
|
def get_active_markets_cloudscraper(api_key): |
|
|
"""Retrieves the list of active markets using cloudscraper to bypass Cloudflare.""" |
|
|
headers = { |
|
|
"Authorization": f"Bearer {api_key}", |
|
|
"User-Agent": ("Mozilla/5.0 (Windows NT 10.0; Win64; x64) " |
|
|
"AppleWebKit/537.36 (KHTML, like Gecko) " |
|
|
"Chrome/115.0.0.0 Safari/537.36") |
|
|
} |
|
|
url = "https://archeanvision.com/api/signals/available" |
|
|
scraper = cloudscraper.create_scraper() |
|
|
response = scraper.get(url, headers=headers) |
|
|
response.raise_for_status() |
|
|
return response.json() |
|
|
|
|
|
def get_market_data_cloudscraper(api_key, market): |
|
|
"""Retrieves market data for the given market using cloudscraper.""" |
|
|
headers = { |
|
|
"Authorization": f"Bearer {api_key}", |
|
|
"User-Agent": ("Mozilla/5.0 (Windows NT 10.0; Win64; x64) " |
|
|
"AppleWebKit/537.36 (KHTML, like Gecko) " |
|
|
"Chrome/115.0.0.0 Safari/537.36") |
|
|
} |
|
|
|
|
|
url = f"https://archeanvision.com/api/signals/{market}/data" |
|
|
scraper = cloudscraper.create_scraper() |
|
|
response = scraper.get(url, headers=headers) |
|
|
response.raise_for_status() |
|
|
return response.json() |
|
|
|
|
|
def get_market_signals_cloudscraper(api_key, market): |
|
|
"""Retrieves market signals for the given market using cloudscraper.""" |
|
|
headers = { |
|
|
"Authorization": f"Bearer {api_key}", |
|
|
"User-Agent": ("Mozilla/5.0 (Windows NT 10.0; Win64; x64) " |
|
|
"AppleWebKit/537.36 (KHTML, like Gecko) " |
|
|
"Chrome/115.0.0.0 Safari/537.36") |
|
|
} |
|
|
url = f"https://archeanvision.com/api/signals/{market}/signals" |
|
|
scraper = cloudscraper.create_scraper() |
|
|
response = scraper.get(url, headers=headers) |
|
|
response.raise_for_status() |
|
|
return response.json() |
|
|
|
|
|
|
|
|
|
|
|
def get_selected_market(market_list): |
|
|
""" |
|
|
Retourne le marché sélectionné à partir des paramètres d'URL ou, par défaut, le premier élément. |
|
|
Met à jour le paramètre de l'URL si l'utilisateur choisit un marché différent. |
|
|
""" |
|
|
|
|
|
params = st.query_params |
|
|
|
|
|
|
|
|
default_market = params.get("market", market_list[0]) |
|
|
|
|
|
if isinstance(default_market, list): |
|
|
default_market = default_market[0] |
|
|
|
|
|
|
|
|
default_index = market_list.index(default_market) if default_market in market_list else 0 |
|
|
|
|
|
|
|
|
selected = st.selectbox("Select a market:", market_list, index=default_index) |
|
|
|
|
|
|
|
|
if selected != default_market: |
|
|
st.query_params.market = selected |
|
|
|
|
|
|
|
|
return selected |
|
|
|
|
|
|
|
|
def main(): |
|
|
st.title("Active AI Crypto Markets - frameWorxVision") |
|
|
|
|
|
st.markdown(""" |
|
|
### What is frameWorxVision? |
|
|
**frameWorx** is an autonomous multi-market trading agent. |
|
|
It operates simultaneously on multiple crypto assets, monitoring price movements |
|
|
in real time and delivering **data** as well as **signals** (BUY, SELL, etc.) |
|
|
to automate and optimize decision-making. |
|
|
- **AI Agent**: Continuously analyzes crypto markets. |
|
|
- **Multi-Market**: Manages multiple assets at once. |
|
|
- **Live Data**: Access to streaming data feeds (SSE). |
|
|
- **Buy/Sell Signals**: Generated in real-time to seize market opportunities. |
|
|
Below is a dashboard showcasing the active markets, their 24h data |
|
|
(1,440 most recent data points), and their associated signals. |
|
|
--- |
|
|
**Join our Platform as a beta tester** to help improve the agent and the system. |
|
|
- Official platform: [https://frameworx.site](https://frameworx.fun) |
|
|
|
|
|
""") |
|
|
|
|
|
|
|
|
try: |
|
|
active_markets = get_active_markets_cloudscraper(API_KEY) |
|
|
except Exception as e: |
|
|
st.error(f"Error fetching active markets: {e}") |
|
|
return |
|
|
|
|
|
if not active_markets: |
|
|
st.error("No active markets found through the API.") |
|
|
return |
|
|
|
|
|
|
|
|
market_list = [] |
|
|
if isinstance(active_markets, list): |
|
|
for item in active_markets: |
|
|
|
|
|
if isinstance(item, dict) and "market" in item: |
|
|
market_list.append(item["market"]) |
|
|
elif isinstance(item, str): |
|
|
market_list.append(item) |
|
|
else: |
|
|
st.warning(f"Item missing 'market' key: {item}") |
|
|
else: |
|
|
st.error("The structure of 'active_markets' is not a list as expected.") |
|
|
return |
|
|
|
|
|
if not market_list: |
|
|
st.error("The market list is empty or 'market' keys not found.") |
|
|
return |
|
|
|
|
|
selected_market = get_selected_market(market_list) |
|
|
if not selected_market: |
|
|
st.error("No market selected.") |
|
|
return |
|
|
|
|
|
st.subheader(f"Selected Market: {selected_market}") |
|
|
st.write(f"Fetching data for **{selected_market}** ...") |
|
|
|
|
|
|
|
|
try: |
|
|
market_data = get_market_data_cloudscraper(API_KEY, selected_market) |
|
|
except Exception as e: |
|
|
st.error(f"Error fetching market data for {selected_market}: {e}") |
|
|
return |
|
|
|
|
|
if not market_data: |
|
|
st.error(f"No data found for market {selected_market}.") |
|
|
return |
|
|
|
|
|
df = pd.DataFrame(market_data) |
|
|
if "close_time" in df.columns: |
|
|
df['close_time'] = pd.to_datetime(df['close_time'], unit='ms', errors='coerce') |
|
|
else: |
|
|
st.error("The 'close_time' column is missing from the retrieved data.") |
|
|
return |
|
|
|
|
|
st.write("### Market Data Overview") |
|
|
st.dataframe(df.head()) |
|
|
|
|
|
required_cols = {"close", "last_predict_15m", "last_predict_1h"} |
|
|
if not required_cols.issubset(df.columns): |
|
|
st.error( |
|
|
f"The required columns {required_cols} are not all present. " |
|
|
f"Available columns: {list(df.columns)}" |
|
|
) |
|
|
return |
|
|
|
|
|
fig = px.line( |
|
|
df, |
|
|
x='close_time', |
|
|
y=['close', 'last_predict_15m', 'last_predict_1h'], |
|
|
title=f"{selected_market} : Close Price & Predictions", |
|
|
labels={ |
|
|
'close_time': 'Time', |
|
|
'value': 'Price', |
|
|
'variable': 'Metric' |
|
|
} |
|
|
) |
|
|
st.plotly_chart(fig, use_container_width=True) |
|
|
|
|
|
st.write(f"### Signals for {selected_market}") |
|
|
try: |
|
|
signals = get_market_signals_cloudscraper(API_KEY, selected_market) |
|
|
except Exception as e: |
|
|
st.error(f"Error fetching signals for {selected_market}: {e}") |
|
|
return |
|
|
|
|
|
if not signals: |
|
|
st.warning(f"No signals found for market {selected_market}.") |
|
|
else: |
|
|
df_signals = pd.DataFrame(signals) |
|
|
if 'date' in df_signals.columns: |
|
|
df_signals['date'] = pd.to_datetime(df_signals['date'], unit='s', errors='coerce') |
|
|
for col in df_signals.columns: |
|
|
if df_signals[col].apply(lambda x: isinstance(x, dict)).any(): |
|
|
df_signals[col] = df_signals[col].apply(lambda x: str(x) if isinstance(x, dict) else x) |
|
|
if 'date' in df_signals.columns: |
|
|
df_signals = df_signals.sort_values('date', ascending=False) |
|
|
st.write("Total number of signals:", len(df_signals)) |
|
|
st.write("Preview of the last 4 signals:") |
|
|
st.dataframe(df_signals.head(4)) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |
|
|
|
|
|
|