ioanasong's picture
added webcam file for huggingface
5dd71fd
from transformers import ViTFeatureExtractor, ViTForImageClassification
from PIL import Image
import torch
import gradio as gr
from torch.nn import functional as F
# gr.load("models/ioanasong/vit-MINC-2500").launch()
# Load the pre-trained ViT model and feature extractor
model_name = "ioanasong/vit-MINC-2500"
model = ViTForImageClassification.from_pretrained(model_name)
model.eval()
feature_extractor = ViTFeatureExtractor.from_pretrained(model_name)
# Define the prediction function
# def predict(image):
# print(image)
# # Preprocess the image
# inputs = feature_extractor(images=image, return_tensors="pt")
# # Make prediction
# with torch.no_grad():
# outputs = model(**inputs)
# logits = outputs.logits
# # Get predicted label
# predicted_class_idx = logits.argmax(-1).item()
# predicted_label = model.config.id2label[predicted_class_idx]
# return predicted_label
def predict(image):
# Preprocess the image using the feature extractor
inputs = feature_extractor(images=image, return_tensors="pt")
# Make prediction using the model
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
# Compute softmax probabilities
probs = F.softmax(logits, dim=-1)[0]
# Create a dictionary of label and probability
prob_dict = {model.config.id2label[i]: prob.item() for i, prob in enumerate(probs)}
return prob_dict
# Create the Gradio interface
iface = gr.Interface(
fn=predict,
inputs=gr.Image(sources=['webcam'], streaming = True),
# outputs=gr.Label(num_top_classes=len(model.config.id2label)),
outputs=gr.Label(num_top_classes=5),
title="ViT Image Classification",
description="Capture an image from the camera and classify it using a pre-trained Vision Transformer (ViT) model.",
)
# Launch the app
iface.launch()