invincible-jha commited on
Commit
fea9f64
·
verified ·
1 Parent(s): 8c3c4a1

Upload 3 files

Browse files
utils/gpu-optimizer.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import gc
3
+
4
+ class GPUOptimizer:
5
+ def __init__(self):
6
+ self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
7
+
8
+ def optimize(self):
9
+ if torch.cuda.is_available():
10
+ # Clear cache
11
+ torch.cuda.empty_cache()
12
+ gc.collect()
13
+
14
+ # Set memory fraction
15
+ torch.cuda.set_per_process_memory_fraction(0.9)
16
+
17
+ # Enable TF32 for better performance
18
+ torch.backends.cuda.matmul.allow_tf32 = True
19
+ torch.backends.cudnn.allow_tf32 = True
20
+
21
+ # Enable autocast for mixed precision
22
+ torch.cuda.amp.autocast(enabled=True)
23
+
24
+ def get_memory_usage(self):
25
+ if torch.cuda.is_available():
26
+ return {
27
+ 'allocated': torch.cuda.memory_allocated() / 1024**2, # MB
28
+ 'reserved': torch.cuda.memory_reserved() / 1024**2 # MB
29
+ }
30
+ return {'allocated': 0, 'reserved': 0}
utils/model-cache.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from functools import lru_cache
2
+ import hashlib
3
+ import json
4
+
5
+ class ModelCache:
6
+ def __init__(self, cache_size=128):
7
+ self.cache_size = cache_size
8
+
9
+ @lru_cache(maxsize=128)
10
+ def cache_result(self, input_key, result):
11
+ return result
12
+
13
+ def get_cache_key(self, audio_data):
14
+ # Create hash of audio data for cache key
15
+ return hashlib.md5(audio_data).hexdigest()
16
+
17
+ def clear_cache(self):
18
+ self.cache_result.cache_clear()
utils/visualizer.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import plotly.graph_objects as go
2
+ from typing import Dict
3
+
4
+ def create_emotion_plot(emotions: Dict[str, float]) -> str:
5
+ """Create emotion distribution plot"""
6
+ fig = go.Figure()
7
+
8
+ # Add bar plot
9
+ fig.add_trace(go.Bar(
10
+ x=list(emotions.keys()),
11
+ y=list(emotions.values()),
12
+ marker_color='rgb(55, 83, 109)'
13
+ ))
14
+
15
+ # Update layout
16
+ fig.update_layout(
17
+ title='Emotion Distribution',
18
+ xaxis_title='Emotion',
19
+ yaxis_title='Score',
20
+ yaxis_range=[0, 1],
21
+ template='plotly_white',
22
+ height=400
23
+ )
24
+
25
+ return fig.to_html(include_plotlyjs=True)
26
+
27
+ def create_pitch_plot(pitch_data: Dict) -> str:
28
+ """Create pitch analysis plot"""
29
+ fig = go.Figure()
30
+
31
+ # Add box plot
32
+ fig.add_trace(go.Box(
33
+ y=[pitch_data['min'], pitch_data['mean'], pitch_data['max']],
34
+ name='Pitch Distribution',
35
+ boxpoints='all'
36
+ ))
37
+
38
+ # Update layout
39
+ fig.update_layout(
40
+ title='Pitch Analysis',
41
+ yaxis_title='Frequency (Hz)',
42
+ template='plotly_white',
43
+ height=400
44
+ )
45
+
46
+ return fig.to_html(include_plotlyjs=True)
47
+
48
+ def create_energy_plot(energy_data: Dict) -> str:
49
+ """Create energy analysis plot"""
50
+ fig = go.Figure()
51
+
52
+ # Add indicator
53
+ fig.add_trace(go.Indicator(
54
+ mode='gauge+number',
55
+ value=energy_data['mean'],
56
+ title={'text': 'Voice Energy Level'},
57
+ gauge={
58
+ 'axis': {'range': [0, 1]},
59
+ 'bar': {'color': 'darkblue'},
60
+ 'steps': [
61
+ {'range': [0, 0.3], 'color': 'lightgray'},
62
+ {'range': [0.3, 0.7], 'color': 'gray'},
63
+ {'range': [0.7, 1], 'color': 'darkgray'}
64
+ ]
65
+ }
66
+ ))
67
+
68
+ # Update layout
69
+ fig.update_layout(
70
+ height=300,
71
+ template='plotly_white'
72
+ )
73
+
74
+ return fig.to_html(include_plotlyjs=True)