invincible-jha
commited on
Upload app.py
Browse files
app.py
CHANGED
@@ -4,123 +4,73 @@ from transformers import WhisperProcessor, WhisperForConditionalGeneration, Auto
|
|
4 |
import librosa
|
5 |
import numpy as np
|
6 |
import plotly.graph_objects as go
|
|
|
|
|
|
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
self.processors = {}
|
14 |
-
self.load_models()
|
15 |
-
|
16 |
-
def load_models(self):
|
17 |
-
try:
|
18 |
-
print("Loading Whisper model...")
|
19 |
-
self.processors['whisper'] = WhisperProcessor.from_pretrained(
|
20 |
-
"openai/whisper-base" # Removed device_map parameter
|
21 |
-
)
|
22 |
-
self.models['whisper'] = WhisperForConditionalGeneration.from_pretrained(
|
23 |
-
"openai/whisper-base" # Removed device_map parameter
|
24 |
-
).to(self.device)
|
25 |
-
|
26 |
-
print("Loading emotion model...")
|
27 |
-
self.tokenizers['emotion'] = AutoTokenizer.from_pretrained(
|
28 |
-
"j-hartmann/emotion-english-distilroberta-base"
|
29 |
-
)
|
30 |
-
self.models['emotion'] = AutoModelForSequenceClassification.from_pretrained(
|
31 |
-
"j-hartmann/emotion-english-distilroberta-base" # Removed device_map parameter
|
32 |
-
).to(self.device)
|
33 |
-
|
34 |
-
print("Models loaded successfully")
|
35 |
-
except Exception as e:
|
36 |
-
print(f"Error loading models: {str(e)}")
|
37 |
-
raise
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
def analyze(self, audio_path):
|
74 |
-
try:
|
75 |
-
print(f"Processing audio file: {audio_path}")
|
76 |
-
waveform, features = self.audio_processor.process_audio(audio_path)
|
77 |
-
|
78 |
-
print("Transcribing audio...")
|
79 |
-
inputs = self.model_manager.processors['whisper'](
|
80 |
-
waveform,
|
81 |
-
return_tensors="pt"
|
82 |
-
).input_features.to(self.model_manager.device)
|
83 |
-
|
84 |
-
with torch.no_grad():
|
85 |
-
predicted_ids = self.model_manager.models['whisper'].generate(inputs)
|
86 |
-
transcription = self.model_manager.processors['whisper'].batch_decode(
|
87 |
-
predicted_ids,
|
88 |
-
skip_special_tokens=True
|
89 |
-
)[0]
|
90 |
-
|
91 |
-
print("Analyzing emotions...")
|
92 |
-
inputs = self.model_manager.tokenizers['emotion'](
|
93 |
-
transcription,
|
94 |
-
return_tensors="pt",
|
95 |
-
padding=True,
|
96 |
-
truncation=True,
|
97 |
-
max_length=512
|
98 |
-
)
|
99 |
-
inputs = {k: v.to(self.model_manager.device) for k, v in inputs.items()}
|
100 |
-
|
101 |
-
with torch.no_grad():
|
102 |
-
outputs = self.model_manager.models['emotion'](**inputs)
|
103 |
-
emotions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
}
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
|
|
118 |
|
119 |
def create_emotion_plot(emotions):
|
|
|
120 |
try:
|
121 |
fig = go.Figure(data=[
|
122 |
go.Bar(
|
123 |
-
x=list(emotions.keys()),
|
124 |
y=list(emotions.values()),
|
125 |
marker_color='rgb(55, 83, 109)'
|
126 |
)
|
@@ -140,48 +90,105 @@ def create_emotion_plot(emotions):
|
|
140 |
print(f"Error creating plot: {str(e)}")
|
141 |
return "Error creating visualization"
|
142 |
|
143 |
-
def
|
|
|
144 |
try:
|
145 |
-
if
|
|
|
146 |
return "No audio file provided", "Please provide an audio file"
|
147 |
-
|
148 |
-
print(f"Processing audio file: {audio_file}")
|
149 |
-
results = analyzer.analyze(audio_file)
|
150 |
|
151 |
-
|
152 |
-
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
except Exception as e:
|
156 |
-
error_msg = f"Error
|
157 |
print(error_msg)
|
158 |
return error_msg, "Error in analysis"
|
159 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
if __name__ == "__main__":
|
161 |
-
|
162 |
-
try:
|
163 |
-
analyzer = Analyzer()
|
164 |
-
|
165 |
-
print("Creating Gradio interface...")
|
166 |
-
interface = gr.Interface(
|
167 |
-
fn=process_audio,
|
168 |
-
inputs=gr.Audio(sources=["microphone", "upload"], type="filepath"),
|
169 |
-
outputs=[
|
170 |
-
gr.Textbox(label="Transcription"),
|
171 |
-
gr.HTML(label="Emotion Analysis")
|
172 |
-
],
|
173 |
-
title="Vocal Biomarker Analysis",
|
174 |
-
description="Analyze voice for emotional indicators",
|
175 |
-
examples=[],
|
176 |
-
cache_examples=False
|
177 |
-
)
|
178 |
-
|
179 |
-
print("Launching application...")
|
180 |
-
interface.launch(
|
181 |
-
server_name="0.0.0.0",
|
182 |
-
server_port=7860,
|
183 |
-
share=False
|
184 |
-
)
|
185 |
-
except Exception as e:
|
186 |
-
print(f"Fatal error during application startup: {str(e)}")
|
187 |
-
raise
|
|
|
4 |
import librosa
|
5 |
import numpy as np
|
6 |
import plotly.graph_objects as go
|
7 |
+
import warnings
|
8 |
+
import os
|
9 |
+
warnings.filterwarnings('ignore')
|
10 |
|
11 |
+
# Global variables for models
|
12 |
+
processor = None
|
13 |
+
whisper_model = None
|
14 |
+
emotion_tokenizer = None
|
15 |
+
emotion_model = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
def load_models():
|
18 |
+
"""Initialize and load all required models"""
|
19 |
+
global processor, whisper_model, emotion_tokenizer, emotion_model
|
20 |
+
|
21 |
+
try:
|
22 |
+
print("Loading Whisper model...")
|
23 |
+
processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
|
24 |
+
whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
|
25 |
+
|
26 |
+
print("Loading emotion model...")
|
27 |
+
emotion_tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
28 |
+
emotion_model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
29 |
+
|
30 |
+
# Move models to CPU explicitly
|
31 |
+
whisper_model.to("cpu")
|
32 |
+
emotion_model.to("cpu")
|
33 |
+
|
34 |
+
print("Models loaded successfully!")
|
35 |
+
return True
|
36 |
+
except Exception as e:
|
37 |
+
print(f"Error loading models: {str(e)}")
|
38 |
+
return False
|
39 |
|
40 |
+
def process_audio(audio_input):
|
41 |
+
"""Process audio file and extract waveform"""
|
42 |
+
try:
|
43 |
+
print(f"Audio input received: {type(audio_input)}")
|
44 |
+
|
45 |
+
# Handle tuple input from Gradio
|
46 |
+
if isinstance(audio_input, tuple):
|
47 |
+
print(f"Audio input is tuple: {audio_input[0]}, {audio_input[1]}")
|
48 |
+
audio_path = audio_input[0] # Get the file path
|
49 |
+
else:
|
50 |
+
audio_path = audio_input
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
print(f"Processing audio from path: {audio_path}")
|
53 |
+
|
54 |
+
# Verify file exists
|
55 |
+
if not os.path.exists(audio_path):
|
56 |
+
raise FileNotFoundError(f"Audio file not found at {audio_path}")
|
57 |
|
58 |
+
# Load and resample audio
|
59 |
+
print("Loading audio file with librosa...")
|
60 |
+
waveform, sr = librosa.load(audio_path, sr=16000)
|
61 |
+
print(f"Audio loaded successfully. Shape: {waveform.shape}, SR: {sr}")
|
62 |
+
|
63 |
+
return waveform
|
64 |
+
except Exception as e:
|
65 |
+
print(f"Error processing audio: {str(e)}")
|
66 |
+
raise
|
67 |
|
68 |
def create_emotion_plot(emotions):
|
69 |
+
"""Create plotly visualization for emotion scores"""
|
70 |
try:
|
71 |
fig = go.Figure(data=[
|
72 |
go.Bar(
|
73 |
+
x=list(emotions.keys()),
|
74 |
y=list(emotions.values()),
|
75 |
marker_color='rgb(55, 83, 109)'
|
76 |
)
|
|
|
90 |
print(f"Error creating plot: {str(e)}")
|
91 |
return "Error creating visualization"
|
92 |
|
93 |
+
def analyze_audio(audio_input):
|
94 |
+
"""Main function to analyze audio input"""
|
95 |
try:
|
96 |
+
if audio_input is None:
|
97 |
+
print("No audio input provided")
|
98 |
return "No audio file provided", "Please provide an audio file"
|
|
|
|
|
|
|
99 |
|
100 |
+
print(f"Received audio input: {audio_input}")
|
101 |
+
|
102 |
+
# Process audio
|
103 |
+
waveform = process_audio(audio_input)
|
104 |
+
|
105 |
+
if waveform is None or len(waveform) == 0:
|
106 |
+
return "Error: Invalid audio file", "Please provide a valid audio file"
|
107 |
+
|
108 |
+
# Transcribe audio
|
109 |
+
print("Transcribing audio...")
|
110 |
+
inputs = processor(waveform, sampling_rate=16000, return_tensors="pt").input_features
|
111 |
+
|
112 |
+
with torch.no_grad():
|
113 |
+
predicted_ids = whisper_model.generate(inputs)
|
114 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
115 |
+
|
116 |
+
print(f"Transcription completed: {transcription}")
|
117 |
+
|
118 |
+
if not transcription or transcription.isspace():
|
119 |
+
return "No speech detected in audio", "Unable to analyze emotions without speech"
|
120 |
+
|
121 |
+
# Analyze emotions
|
122 |
+
print("Analyzing emotions...")
|
123 |
+
inputs = emotion_tokenizer(
|
124 |
+
transcription,
|
125 |
+
return_tensors="pt",
|
126 |
+
padding=True,
|
127 |
+
truncation=True,
|
128 |
+
max_length=512
|
129 |
)
|
130 |
+
|
131 |
+
with torch.no_grad():
|
132 |
+
outputs = emotion_model(**inputs)
|
133 |
+
emotions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
134 |
+
|
135 |
+
emotion_labels = ['anger', 'fear', 'joy', 'neutral', 'sadness', 'surprise']
|
136 |
+
emotion_scores = {
|
137 |
+
label: float(score)
|
138 |
+
for label, score in zip(emotion_labels, emotions[0].cpu().numpy())
|
139 |
+
}
|
140 |
+
|
141 |
+
print(f"Emotion analysis completed: {emotion_scores}")
|
142 |
+
|
143 |
+
# Create visualization
|
144 |
+
emotion_viz = create_emotion_plot(emotion_scores)
|
145 |
+
|
146 |
+
return transcription, emotion_viz
|
147 |
+
|
148 |
+
except FileNotFoundError as e:
|
149 |
+
error_msg = f"Audio file not found: {str(e)}"
|
150 |
+
print(error_msg)
|
151 |
+
return error_msg, "Please provide a valid audio file"
|
152 |
except Exception as e:
|
153 |
+
error_msg = f"Error analyzing audio: {str(e)}"
|
154 |
print(error_msg)
|
155 |
return error_msg, "Error in analysis"
|
156 |
|
157 |
+
# Load models at startup
|
158 |
+
print("Initializing application...")
|
159 |
+
if not load_models():
|
160 |
+
raise RuntimeError("Failed to load required models")
|
161 |
+
|
162 |
+
# Create Gradio interface
|
163 |
+
demo = gr.Interface(
|
164 |
+
fn=analyze_audio,
|
165 |
+
inputs=gr.Audio(
|
166 |
+
source="microphone",
|
167 |
+
type="filepath",
|
168 |
+
label="Audio Input"
|
169 |
+
),
|
170 |
+
outputs=[
|
171 |
+
gr.Textbox(label="Transcription"),
|
172 |
+
gr.HTML(label="Emotion Analysis")
|
173 |
+
],
|
174 |
+
title="Vocal Emotion Analysis",
|
175 |
+
description="""
|
176 |
+
This app analyzes voice recordings to:
|
177 |
+
1. Transcribe speech to text
|
178 |
+
2. Detect emotions in the speech
|
179 |
+
|
180 |
+
Upload an audio file or record directly through your microphone.
|
181 |
+
""",
|
182 |
+
article="""
|
183 |
+
Models used:
|
184 |
+
- Speech recognition: Whisper (tiny)
|
185 |
+
- Emotion detection: DistilRoBERTa
|
186 |
+
|
187 |
+
Note: Processing may take a few moments depending on the length of the audio.
|
188 |
+
""",
|
189 |
+
examples=None,
|
190 |
+
cache_examples=False
|
191 |
+
)
|
192 |
+
|
193 |
if __name__ == "__main__":
|
194 |
+
demo.launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|