Spaces:
Sleeping
Sleeping
# https://huggingface.co/spaces/An-619/FastSAM/edit/main/utils/tools.py | |
import numpy as np | |
from PIL import Image | |
import matplotlib.pyplot as plt | |
import cv2 | |
import torch | |
import os | |
import sys | |
import clip | |
def convert_box_xywh_to_xyxy(box): | |
if len(box) == 4: | |
return [box[0], box[1], box[0] + box[2], box[1] + box[3]] | |
else: | |
result = [] | |
for b in box: | |
b = convert_box_xywh_to_xyxy(b) | |
result.append(b) | |
return result | |
def segment_image(image, bbox): | |
image_array = np.array(image) | |
segmented_image_array = np.zeros_like(image_array) | |
x1, y1, x2, y2 = bbox | |
segmented_image_array[y1:y2, x1:x2] = image_array[y1:y2, x1:x2] | |
segmented_image = Image.fromarray(segmented_image_array) | |
black_image = Image.new("RGB", image.size, (255, 255, 255)) | |
# transparency_mask = np.zeros_like((), dtype=np.uint8) | |
transparency_mask = np.zeros( | |
(image_array.shape[0], image_array.shape[1]), dtype=np.uint8 | |
) | |
transparency_mask[y1:y2, x1:x2] = 255 | |
transparency_mask_image = Image.fromarray(transparency_mask, mode="L") | |
black_image.paste(segmented_image, mask=transparency_mask_image) | |
return black_image | |
def format_results(result, filter=0): | |
annotations = [] | |
n = len(result.masks.data) | |
for i in range(n): | |
annotation = {} | |
mask = result.masks.data[i] == 1.0 | |
if torch.sum(mask) < filter: | |
continue | |
annotation["id"] = i | |
annotation["segmentation"] = mask.cpu().numpy() | |
annotation["bbox"] = result.boxes.data[i] | |
annotation["score"] = result.boxes.conf[i] | |
annotation["area"] = annotation["segmentation"].sum() | |
annotations.append(annotation) | |
return annotations | |
def filter_masks(annotations): # filter the overlap mask | |
annotations.sort(key=lambda x: x["area"], reverse=True) | |
to_remove = set() | |
for i in range(0, len(annotations)): | |
a = annotations[i] | |
for j in range(i + 1, len(annotations)): | |
b = annotations[j] | |
if i != j and j not in to_remove: | |
# check if | |
if b["area"] < a["area"]: | |
if (a["segmentation"] & b["segmentation"]).sum() / b[ | |
"segmentation" | |
].sum() > 0.8: | |
to_remove.add(j) | |
return [a for i, a in enumerate(annotations) if i not in to_remove], to_remove | |
def get_bbox_from_mask(mask): | |
mask = mask.astype(np.uint8) | |
contours, hierarchy = cv2.findContours( | |
mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE | |
) | |
x1, y1, w, h = cv2.boundingRect(contours[0]) | |
x2, y2 = x1 + w, y1 + h | |
if len(contours) > 1: | |
for b in contours: | |
x_t, y_t, w_t, h_t = cv2.boundingRect(b) | |
# 将多个bbox合并成一个 | |
x1 = min(x1, x_t) | |
y1 = min(y1, y_t) | |
x2 = max(x2, x_t + w_t) | |
y2 = max(y2, y_t + h_t) | |
h = y2 - y1 | |
w = x2 - x1 | |
return [x1, y1, x2, y2] | |
def fast_process( | |
annotations, args, mask_random_color, bbox=None, points=None, edges=False | |
): | |
if isinstance(annotations[0], dict): | |
annotations = [annotation["segmentation"] for annotation in annotations] | |
result_name = os.path.basename(args.img_path) | |
image = cv2.imread(args.img_path) | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
original_h = image.shape[0] | |
original_w = image.shape[1] | |
if sys.platform == "darwin": | |
plt.switch_backend("TkAgg") | |
plt.figure(figsize=(original_w/100, original_h/100)) | |
# Add subplot with no margin. | |
plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0) | |
plt.margins(0, 0) | |
plt.gca().xaxis.set_major_locator(plt.NullLocator()) | |
plt.gca().yaxis.set_major_locator(plt.NullLocator()) | |
plt.imshow(image) | |
if args.better_quality == True: | |
if isinstance(annotations[0], torch.Tensor): | |
annotations = np.array(annotations.cpu()) | |
for i, mask in enumerate(annotations): | |
mask = cv2.morphologyEx( | |
mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8) | |
) | |
annotations[i] = cv2.morphologyEx( | |
mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8) | |
) | |
if args.device == "cpu": | |
annotations = np.array(annotations) | |
fast_show_mask( | |
annotations, | |
plt.gca(), | |
random_color=mask_random_color, | |
bbox=bbox, | |
points=points, | |
point_label=args.point_label, | |
retinamask=args.retina, | |
target_height=original_h, | |
target_width=original_w, | |
) | |
else: | |
if isinstance(annotations[0], np.ndarray): | |
annotations = torch.from_numpy(annotations) | |
fast_show_mask_gpu( | |
annotations, | |
plt.gca(), | |
random_color=args.randomcolor, | |
bbox=bbox, | |
points=points, | |
point_label=args.point_label, | |
retinamask=args.retina, | |
target_height=original_h, | |
target_width=original_w, | |
) | |
if isinstance(annotations, torch.Tensor): | |
annotations = annotations.cpu().numpy() | |
if args.withContours == True: | |
contour_all = [] | |
temp = np.zeros((original_h, original_w, 1)) | |
for i, mask in enumerate(annotations): | |
if type(mask) == dict: | |
mask = mask["segmentation"] | |
annotation = mask.astype(np.uint8) | |
if args.retina == False: | |
annotation = cv2.resize( | |
annotation, | |
(original_w, original_h), | |
interpolation=cv2.INTER_NEAREST, | |
) | |
contours, hierarchy = cv2.findContours( | |
annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE | |
) | |
for contour in contours: | |
contour_all.append(contour) | |
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2) | |
color = np.array([0 / 255, 0 / 255, 255 / 255, 0.8]) | |
contour_mask = temp / 255 * color.reshape(1, 1, -1) | |
plt.imshow(contour_mask) | |
save_path = args.output | |
if not os.path.exists(save_path): | |
os.makedirs(save_path) | |
plt.axis("off") | |
fig = plt.gcf() | |
plt.draw() | |
try: | |
buf = fig.canvas.tostring_rgb() | |
except AttributeError: | |
fig.canvas.draw() | |
buf = fig.canvas.tostring_rgb() | |
cols, rows = fig.canvas.get_width_height() | |
img_array = np.fromstring(buf, dtype=np.uint8).reshape(rows, cols, 3) | |
cv2.imwrite(os.path.join(save_path, result_name), cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR)) | |
# CPU post process | |
def fast_show_mask( | |
annotation, | |
ax, | |
random_color=False, | |
bbox=None, | |
points=None, | |
point_label=None, | |
retinamask=True, | |
target_height=960, | |
target_width=960, | |
): | |
msak_sum = annotation.shape[0] | |
height = annotation.shape[1] | |
weight = annotation.shape[2] | |
# 将annotation 按照面积 排序 | |
areas = np.sum(annotation, axis=(1, 2)) | |
sorted_indices = np.argsort(areas) | |
annotation = annotation[sorted_indices] | |
index = (annotation != 0).argmax(axis=0) | |
if random_color == True: | |
color = np.random.random((msak_sum, 1, 1, 3)) | |
else: | |
color = np.ones((msak_sum, 1, 1, 3)) * np.array( | |
[30 / 255, 144 / 255, 255 / 255] | |
) | |
transparency = np.ones((msak_sum, 1, 1, 1)) * 0.6 | |
visual = np.concatenate([color, transparency], axis=-1) | |
mask_image = np.expand_dims(annotation, -1) * visual | |
show = np.zeros((height, weight, 4)) | |
h_indices, w_indices = np.meshgrid( | |
np.arange(height), np.arange(weight), indexing="ij" | |
) | |
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None)) | |
# 使用向量化索引更新show的值 | |
show[h_indices, w_indices, :] = mask_image[indices] | |
if bbox is not None: | |
x1, y1, x2, y2 = bbox | |
ax.add_patch( | |
plt.Rectangle( | |
(x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1 | |
) | |
) | |
# draw point | |
if points is not None: | |
plt.scatter( | |
[point[0] for i, point in enumerate(points) if point_label[i] == 1], | |
[point[1] for i, point in enumerate(points) if point_label[i] == 1], | |
s=20, | |
c="y", | |
) | |
plt.scatter( | |
[point[0] for i, point in enumerate(points) if point_label[i] == 0], | |
[point[1] for i, point in enumerate(points) if point_label[i] == 0], | |
s=20, | |
c="m", | |
) | |
if retinamask == False: | |
show = cv2.resize( | |
show, (target_width, target_height), interpolation=cv2.INTER_NEAREST | |
) | |
ax.imshow(show) | |
def fast_show_mask_gpu( | |
annotation, | |
ax, | |
random_color=False, | |
bbox=None, | |
points=None, | |
point_label=None, | |
retinamask=True, | |
target_height=960, | |
target_width=960, | |
): | |
msak_sum = annotation.shape[0] | |
height = annotation.shape[1] | |
weight = annotation.shape[2] | |
areas = torch.sum(annotation, dim=(1, 2)) | |
sorted_indices = torch.argsort(areas, descending=False) | |
annotation = annotation[sorted_indices] | |
# 找每个位置第一个非零值下标 | |
index = (annotation != 0).to(torch.long).argmax(dim=0) | |
if random_color == True: | |
color = torch.rand((msak_sum, 1, 1, 3)).to(annotation.device) | |
else: | |
color = torch.ones((msak_sum, 1, 1, 3)).to(annotation.device) * torch.tensor( | |
[30 / 255, 144 / 255, 255 / 255] | |
).to(annotation.device) | |
transparency = torch.ones((msak_sum, 1, 1, 1)).to(annotation.device) * 0.6 | |
visual = torch.cat([color, transparency], dim=-1) | |
mask_image = torch.unsqueeze(annotation, -1) * visual | |
# 按index取数,index指每个位置选哪个batch的数,把mask_image转成一个batch的形式 | |
show = torch.zeros((height, weight, 4)).to(annotation.device) | |
h_indices, w_indices = torch.meshgrid( | |
torch.arange(height), torch.arange(weight), indexing="ij" | |
) | |
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None)) | |
# 使用向量化索引更新show的值 | |
show[h_indices, w_indices, :] = mask_image[indices] | |
show_cpu = show.cpu().numpy() | |
if bbox is not None: | |
x1, y1, x2, y2 = bbox | |
ax.add_patch( | |
plt.Rectangle( | |
(x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1 | |
) | |
) | |
# draw point | |
if points is not None: | |
plt.scatter( | |
[point[0] for i, point in enumerate(points) if point_label[i] == 1], | |
[point[1] for i, point in enumerate(points) if point_label[i] == 1], | |
s=20, | |
c="y", | |
) | |
plt.scatter( | |
[point[0] for i, point in enumerate(points) if point_label[i] == 0], | |
[point[1] for i, point in enumerate(points) if point_label[i] == 0], | |
s=20, | |
c="m", | |
) | |
if retinamask == False: | |
show_cpu = cv2.resize( | |
show_cpu, (target_width, target_height), interpolation=cv2.INTER_NEAREST | |
) | |
ax.imshow(show_cpu) | |
# clip | |
def retriev( | |
model, preprocess, elements: [Image.Image], search_text: str, device | |
): | |
preprocessed_images = [preprocess(image).to(device) for image in elements] | |
tokenized_text = clip.tokenize([search_text]).to(device) | |
stacked_images = torch.stack(preprocessed_images) | |
image_features = model.encode_image(stacked_images) | |
text_features = model.encode_text(tokenized_text) | |
image_features /= image_features.norm(dim=-1, keepdim=True) | |
text_features /= text_features.norm(dim=-1, keepdim=True) | |
probs = 100.0 * image_features @ text_features.T | |
return probs[:, 0].softmax(dim=0) | |
def crop_image(annotations, image_like): | |
if isinstance(image_like, str): | |
image = Image.open(image_like) | |
else: | |
image = image_like | |
ori_w, ori_h = image.size | |
mask_h, mask_w = annotations[0]["segmentation"].shape | |
if ori_w != mask_w or ori_h != mask_h: | |
image = image.resize((mask_w, mask_h)) | |
cropped_boxes = [] | |
cropped_images = [] | |
not_crop = [] | |
origin_id = [] | |
for _, mask in enumerate(annotations): | |
if np.sum(mask["segmentation"]) <= 100: | |
continue | |
origin_id.append(_) | |
bbox = get_bbox_from_mask(mask["segmentation"]) # mask 的 bbox | |
cropped_boxes.append(segment_image(image, bbox)) # 保存裁剪的图片 | |
# cropped_boxes.append(segment_image(image,mask["segmentation"])) | |
cropped_images.append(bbox) # 保存裁剪的图片的bbox | |
return cropped_boxes, cropped_images, not_crop, origin_id, annotations | |
def box_prompt(masks, bbox, target_height, target_width): | |
h = masks.shape[1] | |
w = masks.shape[2] | |
if h != target_height or w != target_width: | |
bbox = [ | |
int(bbox[0] * w / target_width), | |
int(bbox[1] * h / target_height), | |
int(bbox[2] * w / target_width), | |
int(bbox[3] * h / target_height), | |
] | |
bbox[0] = round(bbox[0]) if round(bbox[0]) > 0 else 0 | |
bbox[1] = round(bbox[1]) if round(bbox[1]) > 0 else 0 | |
bbox[2] = round(bbox[2]) if round(bbox[2]) < w else w | |
bbox[3] = round(bbox[3]) if round(bbox[3]) < h else h | |
# IoUs = torch.zeros(len(masks), dtype=torch.float32) | |
bbox_area = (bbox[3] - bbox[1]) * (bbox[2] - bbox[0]) | |
masks_area = torch.sum(masks[:, bbox[1] : bbox[3], bbox[0] : bbox[2]], dim=(1, 2)) | |
orig_masks_area = torch.sum(masks, dim=(1, 2)) | |
union = bbox_area + orig_masks_area - masks_area | |
IoUs = masks_area / union | |
max_iou_index = torch.argmax(IoUs) | |
return masks[max_iou_index].cpu().numpy(), max_iou_index | |
def point_prompt(masks, points, point_label, target_height, target_width): # numpy 处理 | |
h = masks[0]["segmentation"].shape[0] | |
w = masks[0]["segmentation"].shape[1] | |
if h != target_height or w != target_width: | |
points = [ | |
[int(point[0] * w / target_width), int(point[1] * h / target_height)] | |
for point in points | |
] | |
onemask = np.zeros((h, w)) | |
masks = sorted(masks, key=lambda x: x['area'], reverse=True) | |
for i, annotation in enumerate(masks): | |
if type(annotation) == dict: | |
mask = annotation['segmentation'] | |
else: | |
mask = annotation | |
for i, point in enumerate(points): | |
if mask[point[1], point[0]] == 1 and point_label[i] == 1: | |
onemask[mask] = 1 | |
if mask[point[1], point[0]] == 1 and point_label[i] == 0: | |
onemask[mask] = 0 | |
onemask = onemask >= 1 | |
return onemask, 0 | |
def text_prompt(annotations, text, img_path, device, wider=False, threshold=0.9): | |
cropped_boxes, cropped_images, not_crop, origin_id, annotations_ = crop_image( | |
annotations, img_path | |
) | |
clip_model, preprocess = clip.load("./weights/CLIP_ViT_B_32.pt", device=device) | |
scores = retriev( | |
clip_model, preprocess, cropped_boxes, text, device=device | |
) | |
max_idx = scores.argsort() | |
max_idx = max_idx[-1] | |
max_idx = origin_id[int(max_idx)] | |
# find the biggest mask which contains the mask with max score | |
if wider: | |
mask0 = annotations_[max_idx]["segmentation"] | |
area0 = np.sum(mask0) | |
areas = [(i, np.sum(mask["segmentation"])) for i, mask in enumerate(annotations_) if i in origin_id] | |
areas = sorted(areas, key=lambda area: area[1], reverse=True) | |
indices = [area[0] for area in areas] | |
for index in indices: | |
if index == max_idx or np.sum(annotations_[index]["segmentation"] & mask0) / area0 > threshold: | |
max_idx = index | |
break | |
return annotations_[max_idx]["segmentation"], max_idx | |