Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,18 +2,26 @@ import gradio as gr
|
|
| 2 |
import os
|
| 3 |
import json
|
| 4 |
import pandas as pd
|
|
|
|
| 5 |
from datasets import load_dataset
|
| 6 |
from huggingface_hub import HfApi
|
| 7 |
|
| 8 |
dataset = load_dataset("intersteller2887/Turing-test-dataset", split="train")
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
# ==============================================================================
|
| 11 |
# 数据定义 (Data Definition)
|
| 12 |
# ==============================================================================
|
| 13 |
DIMENSIONS_DATA = [
|
| 14 |
{
|
| 15 |
"title": "语义和语用特征",
|
| 16 |
-
"audio":
|
| 17 |
"desc": "这是“语义和语用特征”维度的文本描述示例。",
|
| 18 |
"sub_dims": [
|
| 19 |
"记忆一致性:回应者是否能够正确并正确并延续并记忆并延续对话信息?是否存在对上下文的误解或不自洽?", "逻辑连贯性:回应者在语义与对话结构上保持前后一致、合乎逻辑?是否存在前后矛盾的情况?",
|
|
@@ -33,7 +41,7 @@ DIMENSIONS_DATA = [
|
|
| 33 |
},
|
| 34 |
{
|
| 35 |
"title": "非生理性副语言特征",
|
| 36 |
-
"audio":
|
| 37 |
"desc": "这是“非生理性副语言特征”维度的文本描述示例。",
|
| 38 |
"sub_dims": [
|
| 39 |
"节奏:回应者是否存在自然的停顿?语速是否存在自然、流畅的变化?", "语调:在表达疑问、惊讶、强调时,回应者的音调是否会自然上扬或下降?是否表现出符合语境的变化?",
|
|
@@ -48,7 +56,7 @@ DIMENSIONS_DATA = [
|
|
| 48 |
},
|
| 49 |
{
|
| 50 |
"title": "生理性副语言特征",
|
| 51 |
-
"audio":
|
| 52 |
"desc": "这是“生理性副语言特征”维度的文本描述示例。",
|
| 53 |
"sub_dims": [
|
| 54 |
"微生理杂音:回应中是否出现如呼吸声、口水音、气泡音等无意识发声?这些发声是否自然地穿插在恰当的语流节奏当中?",
|
|
@@ -62,7 +70,7 @@ DIMENSIONS_DATA = [
|
|
| 62 |
},
|
| 63 |
{
|
| 64 |
"title": "机械人格",
|
| 65 |
-
"audio":
|
| 66 |
"desc": "这是“机械人格”维度的文本描述示例。",
|
| 67 |
"sub_dims": [
|
| 68 |
"谄媚现象:回应者是否频繁地赞同用户、重复用户的说法、不断表示感谢或道歉?是否存在“无论用户说什么都肯定或支持”的语气模式?",
|
|
@@ -75,7 +83,7 @@ DIMENSIONS_DATA = [
|
|
| 75 |
},
|
| 76 |
{
|
| 77 |
"title": "情感表达",
|
| 78 |
-
"audio":
|
| 79 |
"desc": "这是“情感表达”维度的文本描述示例。",
|
| 80 |
"sub_dims": [
|
| 81 |
"语义层面:回应者的语言内容是否体现出符合上下文的情绪反应?是否表达了人类对某些情境应有的情感态度?",
|
|
@@ -87,12 +95,23 @@ DIMENSIONS_DATA = [
|
|
| 87 |
"""
|
| 88 |
}
|
| 89 |
]
|
|
|
|
| 90 |
DIMENSION_TITLES = [d["title"] for d in DIMENSIONS_DATA]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
QUESTION_SET = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
{"audio": "data/Ses02F_impro01.wav", "desc": "这是第一个测试文件的描述",},
|
| 93 |
{"audio": "data/Ses02F_impro02.wav", "desc": "这是第二个测试文件的描述",},
|
| 94 |
{"audio": "data/Ses02F_impro03.wav", "desc": "这是第三个测试文件的描述",},
|
| 95 |
-
]
|
|
|
|
| 96 |
MAX_SUB_DIMS = max(len(d['sub_dims']) for d in DIMENSIONS_DATA)
|
| 97 |
|
| 98 |
# ==============================================================================
|
|
@@ -462,8 +481,8 @@ with gr.Blocks(theme=gr.themes.Soft(), css=".gradio-container {max-width: 960px
|
|
| 462 |
# 程序入口 (Entry Point)
|
| 463 |
# ==============================================================================
|
| 464 |
if __name__ == "__main__":
|
| 465 |
-
if not os.path.exists("audio"):
|
| 466 |
-
os.makedirs("audio")
|
| 467 |
# A quick check to see if we're in a deployed Space, to avoid local errors.
|
| 468 |
if "SPACE_ID" in os.environ:
|
| 469 |
print("Running in a Hugging Face Space, checking for audio files...")
|
|
|
|
| 2 |
import os
|
| 3 |
import json
|
| 4 |
import pandas as pd
|
| 5 |
+
import random
|
| 6 |
from datasets import load_dataset
|
| 7 |
from huggingface_hub import HfApi
|
| 8 |
|
| 9 |
dataset = load_dataset("intersteller2887/Turing-test-dataset", split="train")
|
| 10 |
|
| 11 |
+
all_data_audio_paths = [
|
| 12 |
+
item['audio']['path'] for item in dataset
|
| 13 |
+
if item['audio']['path'].endswith(".wav") and "/data/" in item['audio']['path'].replace("\\", "/")
|
| 14 |
+
]
|
| 15 |
+
|
| 16 |
+
sample1_audio_path = next((p for p in all_data_audio_paths if p.endswith("sample1.wav")), None)
|
| 17 |
+
|
| 18 |
# ==============================================================================
|
| 19 |
# 数据定义 (Data Definition)
|
| 20 |
# ==============================================================================
|
| 21 |
DIMENSIONS_DATA = [
|
| 22 |
{
|
| 23 |
"title": "语义和语用特征",
|
| 24 |
+
"audio": sample1_audio_path,
|
| 25 |
"desc": "这是“语义和语用特征”维度的文本描述示例。",
|
| 26 |
"sub_dims": [
|
| 27 |
"记忆一致性:回应者是否能够正确并正确并延续并记忆并延续对话信息?是否存在对上下文的误解或不自洽?", "逻辑连贯性:回应者在语义与对话结构上保持前后一致、合乎逻辑?是否存在前后矛盾的情况?",
|
|
|
|
| 41 |
},
|
| 42 |
{
|
| 43 |
"title": "非生理性副语言特征",
|
| 44 |
+
"audio": sample1_audio_path,
|
| 45 |
"desc": "这是“非生理性副语言特征”维度的文本描述示例。",
|
| 46 |
"sub_dims": [
|
| 47 |
"节奏:回应者是否存在自然的停顿?语速是否存在自然、流畅的变化?", "语调:在表达疑问、惊讶、强调时,回应者的音调是否会自然上扬或下降?是否表现出符合语境的变化?",
|
|
|
|
| 56 |
},
|
| 57 |
{
|
| 58 |
"title": "生理性副语言特征",
|
| 59 |
+
"audio": sample1_audio_path,
|
| 60 |
"desc": "这是“生理性副语言特征”维度的文本描述示例。",
|
| 61 |
"sub_dims": [
|
| 62 |
"微生理杂音:回应中是否出现如呼吸声、口水音、气泡音等无意识发声?这些发声是否自然地穿插在恰当的语流节奏当中?",
|
|
|
|
| 70 |
},
|
| 71 |
{
|
| 72 |
"title": "机械人格",
|
| 73 |
+
"audio": sample1_audio_path,
|
| 74 |
"desc": "这是“机械人格”维度的文本描述示例。",
|
| 75 |
"sub_dims": [
|
| 76 |
"谄媚现象:回应者是否频繁地赞同用户、重复用户的说法、不断表示感谢或道歉?是否存在“无论用户说什么都肯定或支持”的语气模式?",
|
|
|
|
| 83 |
},
|
| 84 |
{
|
| 85 |
"title": "情感表达",
|
| 86 |
+
"audio": sample1_audio_path,
|
| 87 |
"desc": "这是“情感表达”维度的文本描述示例。",
|
| 88 |
"sub_dims": [
|
| 89 |
"语义层面:回应者的语言内容是否体现出符合上下文的情绪反应?是否表达了人类对某些情境应有的情感态度?",
|
|
|
|
| 95 |
"""
|
| 96 |
}
|
| 97 |
]
|
| 98 |
+
|
| 99 |
DIMENSION_TITLES = [d["title"] for d in DIMENSIONS_DATA]
|
| 100 |
+
|
| 101 |
+
random.seed()
|
| 102 |
+
selected_audio_paths = random.sample(all_data_audio_paths, 5)
|
| 103 |
+
|
| 104 |
QUESTION_SET = [
|
| 105 |
+
{"audio": path, "desc": f"这是音频文件 {os.path.basename(path)} 的描述"}
|
| 106 |
+
for path in selected_audio_paths
|
| 107 |
+
]
|
| 108 |
+
|
| 109 |
+
"""QUESTION_SET = [
|
| 110 |
{"audio": "data/Ses02F_impro01.wav", "desc": "这是第一个测试文件的描述",},
|
| 111 |
{"audio": "data/Ses02F_impro02.wav", "desc": "这是第二个测试文件的描述",},
|
| 112 |
{"audio": "data/Ses02F_impro03.wav", "desc": "这是第三个测试文件的描述",},
|
| 113 |
+
]"""
|
| 114 |
+
|
| 115 |
MAX_SUB_DIMS = max(len(d['sub_dims']) for d in DIMENSIONS_DATA)
|
| 116 |
|
| 117 |
# ==============================================================================
|
|
|
|
| 481 |
# 程序入口 (Entry Point)
|
| 482 |
# ==============================================================================
|
| 483 |
if __name__ == "__main__":
|
| 484 |
+
"""if not os.path.exists("audio"):
|
| 485 |
+
os.makedirs("audio")"""
|
| 486 |
# A quick check to see if we're in a deployed Space, to avoid local errors.
|
| 487 |
if "SPACE_ID" in os.environ:
|
| 488 |
print("Running in a Hugging Face Space, checking for audio files...")
|