LysandreJik commited on
Commit
60cd313
·
1 Parent(s): f0267c9

Initial commit

Browse files
Files changed (2) hide show
  1. app.py +68 -0
  2. requirements.txt +1 -0
app.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ default_question = """
4
+ We're going to use the <a href="https://huggingface.co/datasets/wikitext"><code>wikitext (link)</a></code> dataset with the <code><a href="https://huggingface.co/bert-base-cased?">bert-base-cased (link)</a></code> model checkpoint.
5
+
6
+ <br/><br/>
7
+
8
+ Start by loading the <code>wikitext-2-raw-v1</code> version of that dataset, and take the 11th example (index 10) of the <code>train</code> split.<br/>
9
+ We'll tokenize this using the appropriate tokenizer, and we'll mask the sixth token (index 5) the sequence.
10
+
11
+ <br/><br/>
12
+
13
+ When using the <code>bert-base-cased</code> checkpoint to unmask that token, what is the most probable prediction?
14
+ """
15
+
16
+ internships = {
17
+ 'Accelerate': default_question,
18
+ 'Diffusion distillation': default_question,
19
+ 'Skops & Scikit-Learn': default_question,
20
+ "Code Generation": default_question,
21
+ "Document AI Democratization": default_question,
22
+ "Evaluate": default_question,
23
+ "ASR": default_question,
24
+ "Efficient video pretraining": default_question,
25
+ "Embodied AI": default_question,
26
+ "Emergence of scene and text understanding": default_question,
27
+ "Everything is multimodal": default_question,
28
+ "Everything is vision": default_question,
29
+ "Retrieval augmentation as prompting": default_question,
30
+ "Social impact evaluations": default_question,
31
+ "Toolkit for detecting distribution shift": default_question,
32
+ "AI Art Tooling Residency": default_question,
33
+ "Gradio as an ecosystem": default_question,
34
+ }
35
+
36
+
37
+ with gr.Blocks() as demo:
38
+ gr.Markdown(
39
+ """
40
+ # Internship introduction
41
+ Please select the internship you would like to apply to and answer the question asked in the Answer box.
42
+ """
43
+ )
44
+
45
+ internship_choice = gr.Dropdown(label='Internship', choices=list(internships.keys()))
46
+
47
+ with gr.Column(visible=False) as details_col:
48
+ summary = gr.HTML(label='Question')
49
+ details = gr.Textbox(label="Answer")
50
+ username = gr.Textbox(label="Hugging Face Username")
51
+ generate_btn = gr.Button("Submit")
52
+ output = gr.Label()
53
+
54
+ def filter_species(species):
55
+ return gr.Label.update(
56
+ internships[species]
57
+ ), gr.update(visible=True)
58
+
59
+ internship_choice.change(filter_species, internship_choice, [summary, details_col])
60
+
61
+ def on_click(_details, _username):
62
+ return f"Submitted: '{_details}' for user '{_username}'"
63
+
64
+ generate_btn.click(on_click, inputs=[details, username], outputs=[output])
65
+
66
+
67
+ if __name__ == "__main__":
68
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ gradio