Spaces:
Runtime error
Runtime error
import json | |
import os | |
from io import BytesIO | |
import gradio as gr | |
from huggingface_hub import upload_file | |
default_question = """ | |
We're going to use the <a href="https://huggingface.co/datasets/wikitext"><code>wikitext (link)</a></code> dataset with the <code><a href="https://huggingface.co/bert-base-cased?">bert-base-cased (link)</a></code> model checkpoint. | |
<br/><br/> | |
Start by loading the <code>wikitext-2-raw-v1</code> version of that dataset, and take the 11th example (index 10) of the <code>train</code> split.<br/> | |
We'll tokenize this using the appropriate tokenizer, and we'll mask the sixth token (index 5) the sequence. | |
<br/><br/> | |
When using the <code>bert-base-cased</code> checkpoint to unmask that token, what is the most probable prediction? | |
Tips: | |
<br/> | |
- You might find the <a href="https://huggingface.co/docs/transformers/index">transformers docs (link)</a> useful. | |
<br/> | |
- You might find the <a href="https://huggingface.co/docs/datasets/index">datasets docs (link)</a> useful. | |
""" | |
internships = { | |
'Accelerate': default_question, | |
'Diffusion distillation': default_question, | |
'Skops & Scikit-Learn': default_question, | |
"Code Generation": default_question, | |
"Document AI Democratization": default_question, | |
"Evaluate": default_question, | |
"ASR": default_question, | |
"Efficient video pretraining": default_question, | |
"Embodied AI": default_question, | |
"Emergence of scene and text understanding": default_question, | |
"Everything is multimodal": default_question, | |
"Everything is vision": default_question, | |
"Retrieval augmentation as prompting": default_question, | |
"Social impact evaluations": default_question, | |
"Toolkit for detecting distribution shift": default_question, | |
"AI Art Tooling Residency": default_question, | |
"Gradio as an ecosystem": default_question, | |
} | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
""" | |
# Internship introduction | |
Please select the internship you would like to apply to and answer the question asked in the Answer box. | |
""" | |
) | |
internship_choice = gr.Dropdown(label='Internship', choices=list(internships.keys())) | |
with gr.Column(visible=False) as details_col: | |
summary = gr.HTML(label='Question') | |
details = gr.Textbox(label="Answer") | |
username = gr.Textbox(label="Hugging Face Username") | |
generate_btn = gr.Button("Submit") | |
output = gr.Label() | |
def filter_species(species): | |
return gr.Label.update( | |
internships[species] | |
), gr.update(visible=True) | |
internship_choice.change(filter_species, internship_choice, [summary, details_col]) | |
def on_click(_details, _username, _internship_choice): | |
response = {'response': _details, "internship": _internship_choice} | |
upload_file( | |
path_or_fileobj=BytesIO(bytes(json.dumps(response), 'utf-8')), | |
path_in_repo=_username, | |
repo_id='lysandre/internships', | |
repo_type='dataset', | |
token=os.environ['HF_TOKEN'] | |
) | |
return f"Submitted: '{_details}' for user '{_username}'" | |
generate_btn.click(on_click, inputs=[details, username, internship_choice], outputs=[output]) | |
if __name__ == "__main__": | |
demo.launch() |