Spaces:
Sleeping
Sleeping
#!/usr/bin/python3 | |
# -*- coding: utf-8 -*- | |
import argparse | |
import platform | |
import gradio as gr | |
from examples import examples | |
from models import model_map | |
from project_settings import project_path | |
def get_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--examples_dir", | |
default=(project_path / "data/examples").as_posix(), | |
type=str | |
) | |
parser.add_argument( | |
"--trained_model_dir", | |
default=(project_path / "trained_models").as_posix(), | |
type=str | |
) | |
args = parser.parse_args() | |
return args | |
def update_model_dropdown(language: str): | |
if language not in model_map.keys(): | |
raise ValueError(f"Unsupported language: {language}") | |
choices = model_map[language] | |
choices = [c["repo_id"] for c in choices] | |
return gr.Dropdown( | |
choices=choices, | |
value=choices[0], | |
interactive=True, | |
) | |
def build_html_output(s: str, style: str = "result_item_success"): | |
return f""" | |
<div class='result'> | |
<div class='result_item {style}'> | |
{s} | |
</div> | |
</div> | |
""" | |
def process_uploaded_file(language: str, | |
repo_id: str, | |
decoding_method: str, | |
num_active_paths: int, | |
add_punctuation: str, | |
in_filename: str, | |
): | |
return "Dummy", build_html_output("Dummy") | |
# css style is copied from | |
# https://huggingface.co/spaces/alphacep/asr/blob/main/app.py#L113 | |
css = """ | |
.result {display:flex;flex-direction:column} | |
.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%} | |
.result_item_success {background-color:mediumaquamarine;color:white;align-self:start} | |
.result_item_error {background-color:#ff7070;color:white;align-self:start} | |
""" | |
def main(): | |
title = "# Automatic Speech Recognition with Next-gen Kaldi" | |
language_choices = ["Chinese"] | |
language_to_models = { | |
"Chinese": ["None"] | |
} | |
# blocks | |
with gr.Blocks(css=css) as blocks: | |
gr.Markdown(value=title) | |
with gr.Tabs(): | |
with gr.TabItem("Upload from disk"): | |
language_radio = gr.Radio( | |
label="Language", | |
choices=language_choices, | |
value=language_choices[0], | |
) | |
model_dropdown = gr.Dropdown( | |
choices=language_to_models[language_choices[0]], | |
label="Select a model", | |
value=language_to_models[language_choices[0]][0], | |
) | |
decoding_method_radio = gr.Radio( | |
label="Decoding method", | |
choices=["greedy_search", "modified_beam_search"], | |
value="greedy_search", | |
) | |
num_active_paths_slider = gr.Slider( | |
minimum=1, | |
value=4, | |
step=1, | |
label="Number of active paths for modified_beam_search", | |
) | |
punct_radio = gr.Radio( | |
label="Whether to add punctuation (Only for Chinese and English)", | |
choices=["Yes", "No"], | |
value="Yes", | |
) | |
uploaded_file = gr.Audio( | |
sources=["upload"], | |
type="filepath", | |
label="Upload from disk", | |
) | |
upload_button = gr.Button("Submit for recognition") | |
uploaded_output = gr.Textbox(label="Recognized speech from uploaded file") | |
uploaded_html_info = gr.HTML(label="Info") | |
gr.Examples( | |
examples=examples, | |
inputs=[ | |
language_radio, | |
model_dropdown, | |
decoding_method_radio, | |
num_active_paths_slider, | |
punct_radio, | |
uploaded_file, | |
], | |
outputs=[uploaded_output, uploaded_html_info], | |
fn=process_uploaded_file, | |
) | |
upload_button.click( | |
process_uploaded_file, | |
inputs=[ | |
language_radio, | |
model_dropdown, | |
decoding_method_radio, | |
num_active_paths_slider, | |
punct_radio, | |
uploaded_file, | |
], | |
outputs=[uploaded_output, uploaded_html_info], | |
) | |
language_radio.change( | |
update_model_dropdown, | |
inputs=language_radio, | |
outputs=model_dropdown, | |
) | |
blocks.queue().launch( | |
share=False if platform.system() == "Windows" else False, | |
server_name="127.0.0.1" if platform.system() == "Windows" else "0.0.0.0", | |
server_port=7860 | |
) | |
return | |
if __name__ == "__main__": | |
main() | |