Spaces:
Sleeping
Sleeping
#!/usr/bin/python3 | |
# -*- coding: utf-8 -*- | |
import argparse | |
import os | |
from pathlib import Path | |
import sys | |
pwd = os.path.abspath(os.path.dirname(__file__)) | |
sys.path.append(os.path.join(pwd, "../../")) | |
import librosa | |
import numpy as np | |
import sherpa | |
from scipy.io import wavfile | |
import torch | |
import torchaudio | |
from project_settings import project_path, temp_directory | |
def get_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--model_dir", | |
default=(project_path / "pretrained_models/huggingface/csukuangfj/wenet-chinese-model").as_posix(), | |
type=str | |
) | |
parser.add_argument( | |
"--filename", | |
default=(project_path / "data/test_wavs/paraformer-zh/si_chuan_hua.wav").as_posix(), | |
type=str | |
) | |
parser.add_argument("--sample_rate", default=16000, type=int) | |
args = parser.parse_args() | |
return args | |
def main(): | |
args = get_args() | |
model_dir = Path(args.model_dir) | |
nn_model_file = model_dir / "final.zip" | |
tokens_file = model_dir / "units.txt" | |
print("nn_model_file: {}".format(nn_model_file)) | |
print("tokens_file: {}".format(tokens_file)) | |
feat_config = sherpa.FeatureConfig(normalize_samples=False) | |
feat_config.fbank_opts.frame_opts.samp_freq = args.sample_rate | |
feat_config.fbank_opts.mel_opts.num_bins = 80 | |
feat_config.fbank_opts.frame_opts.dither = 0 | |
config = sherpa.OfflineRecognizerConfig( | |
nn_model=nn_model_file.as_posix(), | |
tokens=tokens_file.as_posix(), | |
use_gpu=False, | |
feat_config=feat_config, | |
decoding_method="greedy_search", | |
num_active_paths=2, | |
) | |
recognizer = sherpa.OfflineRecognizer(config) | |
signal, sample_rate = librosa.load(args.filename, sr=args.sample_rate) | |
signal *= 32768.0 | |
signal = np.array(signal, dtype=np.int16) | |
temp_file = temp_directory / "temp.wav" | |
wavfile.write( | |
temp_file.as_posix(), | |
rate=args.sample_rate, | |
data=signal | |
) | |
s = recognizer.create_stream() | |
s.accept_wave_file( | |
temp_file.as_posix() | |
) | |
recognizer.decode_stream(s) | |
text = s.result.text.strip() | |
text = text.lower() | |
print("text: {}".format(text)) | |
return | |
if __name__ == "__main__": | |
main() | |