Spaces:
Runtime error
Runtime error
import os, sys | |
import datetime, subprocess | |
from mega import Mega | |
now_dir = os.getcwd() | |
sys.path.append(now_dir) | |
import logging | |
import shutil | |
import threading | |
import traceback | |
import warnings | |
from random import shuffle | |
from subprocess import Popen | |
from time import sleep | |
import json | |
import pathlib | |
import fairseq | |
import faiss | |
import gradio as gr | |
import numpy as np | |
import torch | |
from dotenv import load_dotenv | |
from sklearn.cluster import MiniBatchKMeans | |
from configs.config import Config | |
from i18n.i18n import I18nAuto | |
from infer.lib.train.process_ckpt import ( | |
change_info, | |
extract_small_model, | |
merge, | |
show_info, | |
) | |
from infer.modules.uvr5.modules import uvr | |
from infer.modules.vc.modules import VC | |
logging.getLogger("numba").setLevel(logging.WARNING) | |
logger = logging.getLogger(__name__) | |
tmp = os.path.join(now_dir, "TEMP") | |
shutil.rmtree(tmp, ignore_errors=True) | |
shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True) | |
shutil.rmtree("%s/runtime/Lib/site-packages/uvr5_pack" % (now_dir), ignore_errors=True) | |
os.makedirs(tmp, exist_ok=True) | |
os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True) | |
os.makedirs(os.path.join(now_dir, "assets/weights"), exist_ok=True) | |
os.environ["TEMP"] = tmp | |
warnings.filterwarnings("ignore") | |
torch.manual_seed(114514) | |
load_dotenv() | |
config = Config() | |
vc = VC(config) | |
if config.dml == True: | |
def forward_dml(ctx, x, scale): | |
ctx.scale = scale | |
res = x.clone().detach() | |
return res | |
fairseq.modules.grad_multiply.GradMultiply.forward = forward_dml | |
i18n = I18nAuto() | |
logger.info(i18n) | |
# 判断是否有能用来训练和加速推理的N卡 | |
ngpu = torch.cuda.device_count() | |
gpu_infos = [] | |
mem = [] | |
if_gpu_ok = False | |
if torch.cuda.is_available() or ngpu != 0: | |
for i in range(ngpu): | |
gpu_name = torch.cuda.get_device_name(i) | |
if any( | |
value in gpu_name.upper() | |
for value in [ | |
"10", | |
"16", | |
"20", | |
"30", | |
"40", | |
"A2", | |
"A3", | |
"A4", | |
"P4", | |
"A50", | |
"500", | |
"A60", | |
"70", | |
"80", | |
"90", | |
"M4", | |
"T4", | |
"TITAN", | |
] | |
): | |
# A10#A100#V100#A40#P40#M40#K80#A4500 | |
if_gpu_ok = True # 至少有一张能用的N卡 | |
gpu_infos.append("%s\t%s" % (i, gpu_name)) | |
mem.append( | |
int( | |
torch.cuda.get_device_properties(i).total_memory | |
/ 1024 | |
/ 1024 | |
/ 1024 | |
+ 0.4 | |
) | |
) | |
if if_gpu_ok and len(gpu_infos) > 0: | |
gpu_info = "\n".join(gpu_infos) | |
default_batch_size = min(mem) // 2 | |
else: | |
gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练") | |
default_batch_size = 1 | |
gpus = "-".join([i[0] for i in gpu_infos]) | |
class ToolButton(gr.Button, gr.components.FormComponent): | |
"""Small button with single emoji as text, fits inside gradio forms""" | |
def __init__(self, **kwargs): | |
super().__init__(variant="tool", **kwargs) | |
def get_block_name(self): | |
return "button" | |
weight_root = os.getenv("weight_root") | |
weight_uvr5_root = os.getenv("weight_uvr5_root") | |
index_root = os.getenv("index_root") | |
names = [] | |
for name in os.listdir(weight_root): | |
if name.endswith(".pth"): | |
names.append(name) | |
index_paths = [] | |
for root, dirs, files in os.walk(index_root, topdown=False): | |
for name in files: | |
if name.endswith(".index") and "trained" not in name: | |
index_paths.append("%s/%s" % (root, name)) | |
uvr5_names = [] | |
for name in os.listdir(weight_uvr5_root): | |
if name.endswith(".pth") or "onnx" in name: | |
uvr5_names.append(name.replace(".pth", "")) | |
def change_choices(): | |
names = [] | |
for name in os.listdir(weight_root): | |
if name.endswith(".pth"): | |
names.append(name) | |
index_paths = [] | |
for root, dirs, files in os.walk(index_root, topdown=False): | |
for name in files: | |
if name.endswith(".index") and "trained" not in name: | |
index_paths.append("%s/%s" % (root, name)) | |
audio_files=[] | |
for filename in os.listdir("./audios"): | |
if filename.endswith(('.wav','.mp3','.ogg')): | |
audio_files.append('./audios/'+filename) | |
return {"choices": sorted(names), "__type__": "update"}, { | |
"choices": sorted(index_paths), | |
"__type__": "update", | |
}, {"choices": sorted(audio_files), "__type__": "update"} | |
def clean(): | |
return {"value": "", "__type__": "update"} | |
def export_onnx(): | |
from infer.modules.onnx.export import export_onnx as eo | |
eo() | |
sr_dict = { | |
"32k": 32000, | |
"40k": 40000, | |
"48k": 48000, | |
} | |
def if_done(done, p): | |
while 1: | |
if p.poll() is None: | |
sleep(0.5) | |
else: | |
break | |
done[0] = True | |
def if_done_multi(done, ps): | |
while 1: | |
# poll==None代表进程未结束 | |
# 只要有一个进程未结束都不停 | |
flag = 1 | |
for p in ps: | |
if p.poll() is None: | |
flag = 0 | |
sleep(0.5) | |
break | |
if flag == 1: | |
break | |
done[0] = True | |
def preprocess_dataset(trainset_dir, exp_dir, sr, n_p): | |
sr = sr_dict[sr] | |
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True) | |
f = open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "w") | |
f.close() | |
per = 3.0 if config.is_half else 3.7 | |
cmd = '"%s" infer/modules/train/preprocess.py "%s" %s %s "%s/logs/%s" %s %.1f' % ( | |
config.python_cmd, | |
trainset_dir, | |
sr, | |
n_p, | |
now_dir, | |
exp_dir, | |
config.noparallel, | |
per, | |
) | |
logger.info(cmd) | |
p = Popen(cmd, shell=True) # , stdin=PIPE, stdout=PIPE,stderr=PIPE,cwd=now_dir | |
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读 | |
done = [False] | |
threading.Thread( | |
target=if_done, | |
args=( | |
done, | |
p, | |
), | |
).start() | |
while 1: | |
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f: | |
yield (f.read()) | |
sleep(1) | |
if done[0]: | |
break | |
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f: | |
log = f.read() | |
logger.info(log) | |
yield log | |
# but2.click(extract_f0,[gpus6,np7,f0method8,if_f0_3,trainset_dir4],[info2]) | |
def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir, version19, gpus_rmvpe): | |
gpus = gpus.split("-") | |
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True) | |
f = open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "w") | |
f.close() | |
if if_f0: | |
if f0method != "rmvpe_gpu": | |
cmd = ( | |
'"%s" infer/modules/train/extract/extract_f0_print.py "%s/logs/%s" %s %s' | |
% ( | |
config.python_cmd, | |
now_dir, | |
exp_dir, | |
n_p, | |
f0method, | |
) | |
) | |
logger.info(cmd) | |
p = Popen( | |
cmd, shell=True, cwd=now_dir | |
) # , stdin=PIPE, stdout=PIPE,stderr=PIPE | |
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读 | |
done = [False] | |
threading.Thread( | |
target=if_done, | |
args=( | |
done, | |
p, | |
), | |
).start() | |
else: | |
if gpus_rmvpe != "-": | |
gpus_rmvpe = gpus_rmvpe.split("-") | |
leng = len(gpus_rmvpe) | |
ps = [] | |
for idx, n_g in enumerate(gpus_rmvpe): | |
cmd = ( | |
'"%s" infer/modules/train/extract/extract_f0_rmvpe.py %s %s %s "%s/logs/%s" %s ' | |
% ( | |
config.python_cmd, | |
leng, | |
idx, | |
n_g, | |
now_dir, | |
exp_dir, | |
config.is_half, | |
) | |
) | |
logger.info(cmd) | |
p = Popen( | |
cmd, shell=True, cwd=now_dir | |
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir | |
ps.append(p) | |
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读 | |
done = [False] | |
threading.Thread( | |
target=if_done_multi, # | |
args=( | |
done, | |
ps, | |
), | |
).start() | |
else: | |
cmd = ( | |
config.python_cmd | |
+ ' infer/modules/train/extract/extract_f0_rmvpe_dml.py "%s/logs/%s" ' | |
% ( | |
now_dir, | |
exp_dir, | |
) | |
) | |
logger.info(cmd) | |
p = Popen( | |
cmd, shell=True, cwd=now_dir | |
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir | |
p.wait() | |
done = [True] | |
while 1: | |
with open( | |
"%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r" | |
) as f: | |
yield (f.read()) | |
sleep(1) | |
if done[0]: | |
break | |
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f: | |
log = f.read() | |
logger.info(log) | |
yield log | |
####对不同part分别开多进程 | |
""" | |
n_part=int(sys.argv[1]) | |
i_part=int(sys.argv[2]) | |
i_gpu=sys.argv[3] | |
exp_dir=sys.argv[4] | |
os.environ["CUDA_VISIBLE_DEVICES"]=str(i_gpu) | |
""" | |
leng = len(gpus) | |
ps = [] | |
for idx, n_g in enumerate(gpus): | |
cmd = ( | |
'"%s" infer/modules/train/extract_feature_print.py %s %s %s %s "%s/logs/%s" %s' | |
% ( | |
config.python_cmd, | |
config.device, | |
leng, | |
idx, | |
n_g, | |
now_dir, | |
exp_dir, | |
version19, | |
) | |
) | |
logger.info(cmd) | |
p = Popen( | |
cmd, shell=True, cwd=now_dir | |
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir | |
ps.append(p) | |
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读 | |
done = [False] | |
threading.Thread( | |
target=if_done_multi, | |
args=( | |
done, | |
ps, | |
), | |
).start() | |
while 1: | |
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f: | |
yield (f.read()) | |
sleep(1) | |
if done[0]: | |
break | |
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f: | |
log = f.read() | |
logger.info(log) | |
yield log | |
def get_pretrained_models(path_str, f0_str, sr2): | |
if_pretrained_generator_exist = os.access( | |
"assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), os.F_OK | |
) | |
if_pretrained_discriminator_exist = os.access( | |
"assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK | |
) | |
if not if_pretrained_generator_exist: | |
logger.warn( | |
"assets/pretrained%s/%sG%s.pth not exist, will not use pretrained model", | |
path_str, | |
f0_str, | |
sr2, | |
) | |
if not if_pretrained_discriminator_exist: | |
logger.warn( | |
"assets/pretrained%s/%sD%s.pth not exist, will not use pretrained model", | |
path_str, | |
f0_str, | |
sr2, | |
) | |
return ( | |
"assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2) | |
if if_pretrained_generator_exist | |
else "", | |
"assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2) | |
if if_pretrained_discriminator_exist | |
else "", | |
) | |
def change_sr2(sr2, if_f0_3, version19): | |
path_str = "" if version19 == "v1" else "_v2" | |
f0_str = "f0" if if_f0_3 else "" | |
return get_pretrained_models(path_str, f0_str, sr2) | |
def change_version19(sr2, if_f0_3, version19): | |
path_str = "" if version19 == "v1" else "_v2" | |
if sr2 == "32k" and version19 == "v1": | |
sr2 = "40k" | |
to_return_sr2 = ( | |
{"choices": ["40k", "48k"], "__type__": "update", "value": sr2} | |
if version19 == "v1" | |
else {"choices": ["40k", "48k", "32k"], "__type__": "update", "value": sr2} | |
) | |
f0_str = "f0" if if_f0_3 else "" | |
return ( | |
*get_pretrained_models(path_str, f0_str, sr2), | |
to_return_sr2, | |
) | |
def change_f0(if_f0_3, sr2, version19): # f0method8,pretrained_G14,pretrained_D15 | |
path_str = "" if version19 == "v1" else "_v2" | |
return ( | |
{"visible": if_f0_3, "__type__": "update"}, | |
*get_pretrained_models(path_str, "f0", sr2), | |
) | |
# but3.click(click_train,[exp_dir1,sr2,if_f0_3,save_epoch10,total_epoch11,batch_size12,if_save_latest13,pretrained_G14,pretrained_D15,gpus16]) | |
def click_train( | |
exp_dir1, | |
sr2, | |
if_f0_3, | |
spk_id5, | |
save_epoch10, | |
total_epoch11, | |
batch_size12, | |
if_save_latest13, | |
pretrained_G14, | |
pretrained_D15, | |
gpus16, | |
if_cache_gpu17, | |
if_save_every_weights18, | |
version19, | |
): | |
# 生成filelist | |
exp_dir = "%s/logs/%s" % (now_dir, exp_dir1) | |
os.makedirs(exp_dir, exist_ok=True) | |
gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir) | |
feature_dir = ( | |
"%s/3_feature256" % (exp_dir) | |
if version19 == "v1" | |
else "%s/3_feature768" % (exp_dir) | |
) | |
if if_f0_3: | |
f0_dir = "%s/2a_f0" % (exp_dir) | |
f0nsf_dir = "%s/2b-f0nsf" % (exp_dir) | |
names = ( | |
set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) | |
& set([name.split(".")[0] for name in os.listdir(feature_dir)]) | |
& set([name.split(".")[0] for name in os.listdir(f0_dir)]) | |
& set([name.split(".")[0] for name in os.listdir(f0nsf_dir)]) | |
) | |
else: | |
names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set( | |
[name.split(".")[0] for name in os.listdir(feature_dir)] | |
) | |
opt = [] | |
for name in names: | |
if if_f0_3: | |
opt.append( | |
"%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s" | |
% ( | |
gt_wavs_dir.replace("\\", "\\\\"), | |
name, | |
feature_dir.replace("\\", "\\\\"), | |
name, | |
f0_dir.replace("\\", "\\\\"), | |
name, | |
f0nsf_dir.replace("\\", "\\\\"), | |
name, | |
spk_id5, | |
) | |
) | |
else: | |
opt.append( | |
"%s/%s.wav|%s/%s.npy|%s" | |
% ( | |
gt_wavs_dir.replace("\\", "\\\\"), | |
name, | |
feature_dir.replace("\\", "\\\\"), | |
name, | |
spk_id5, | |
) | |
) | |
fea_dim = 256 if version19 == "v1" else 768 | |
if if_f0_3: | |
for _ in range(2): | |
opt.append( | |
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s" | |
% (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5) | |
) | |
else: | |
for _ in range(2): | |
opt.append( | |
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s" | |
% (now_dir, sr2, now_dir, fea_dim, spk_id5) | |
) | |
shuffle(opt) | |
with open("%s/filelist.txt" % exp_dir, "w") as f: | |
f.write("\n".join(opt)) | |
logger.debug("Write filelist done") | |
# 生成config#无需生成config | |
# cmd = python_cmd + " train_nsf_sim_cache_sid_load_pretrain.py -e mi-test -sr 40k -f0 1 -bs 4 -g 0 -te 10 -se 5 -pg pretrained/f0G40k.pth -pd pretrained/f0D40k.pth -l 1 -c 0" | |
logger.info("Use gpus: %s", str(gpus16)) | |
if pretrained_G14 == "": | |
logger.info("No pretrained Generator") | |
if pretrained_D15 == "": | |
logger.info("No pretrained Discriminator") | |
if version19 == "v1" or sr2 == "40k": | |
config_path = "v1/%s.json" % sr2 | |
else: | |
config_path = "v2/%s.json" % sr2 | |
config_save_path = os.path.join(exp_dir, "config.json") | |
if not pathlib.Path(config_save_path).exists(): | |
with open(config_save_path, "w", encoding="utf-8") as f: | |
json.dump( | |
config.json_config[config_path], | |
f, | |
ensure_ascii=False, | |
indent=4, | |
sort_keys=True, | |
) | |
f.write("\n") | |
if gpus16: | |
cmd = ( | |
'"%s" infer/modules/train/train.py -e "%s" -sr %s -f0 %s -bs %s -g %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s' | |
% ( | |
config.python_cmd, | |
exp_dir1, | |
sr2, | |
1 if if_f0_3 else 0, | |
batch_size12, | |
gpus16, | |
total_epoch11, | |
save_epoch10, | |
"-pg %s" % pretrained_G14 if pretrained_G14 != "" else "", | |
"-pd %s" % pretrained_D15 if pretrained_D15 != "" else "", | |
1 if if_save_latest13 == i18n("是") else 0, | |
1 if if_cache_gpu17 == i18n("是") else 0, | |
1 if if_save_every_weights18 == i18n("是") else 0, | |
version19, | |
) | |
) | |
else: | |
cmd = ( | |
'"%s" infer/modules/train/train.py -e "%s" -sr %s -f0 %s -bs %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s' | |
% ( | |
config.python_cmd, | |
exp_dir1, | |
sr2, | |
1 if if_f0_3 else 0, | |
batch_size12, | |
total_epoch11, | |
save_epoch10, | |
"-pg %s" % pretrained_G14 if pretrained_G14 != "" else "", | |
"-pd %s" % pretrained_D15 if pretrained_D15 != "" else "", | |
1 if if_save_latest13 == i18n("是") else 0, | |
1 if if_cache_gpu17 == i18n("是") else 0, | |
1 if if_save_every_weights18 == i18n("是") else 0, | |
version19, | |
) | |
) | |
logger.info(cmd) | |
p = Popen(cmd, shell=True, cwd=now_dir) | |
p.wait() | |
return "训练结束, 您可查看控制台训练日志或实验文件夹下的train.log" | |
# but4.click(train_index, [exp_dir1], info3) | |
def train_index(exp_dir1, version19): | |
# exp_dir = "%s/logs/%s" % (now_dir, exp_dir1) | |
exp_dir = "logs/%s" % (exp_dir1) | |
os.makedirs(exp_dir, exist_ok=True) | |
feature_dir = ( | |
"%s/3_feature256" % (exp_dir) | |
if version19 == "v1" | |
else "%s/3_feature768" % (exp_dir) | |
) | |
if not os.path.exists(feature_dir): | |
return "请先进行特征提取!" | |
listdir_res = list(os.listdir(feature_dir)) | |
if len(listdir_res) == 0: | |
return "请先进行特征提取!" | |
infos = [] | |
npys = [] | |
for name in sorted(listdir_res): | |
phone = np.load("%s/%s" % (feature_dir, name)) | |
npys.append(phone) | |
big_npy = np.concatenate(npys, 0) | |
big_npy_idx = np.arange(big_npy.shape[0]) | |
np.random.shuffle(big_npy_idx) | |
big_npy = big_npy[big_npy_idx] | |
if big_npy.shape[0] > 2e5: | |
infos.append("Trying doing kmeans %s shape to 10k centers." % big_npy.shape[0]) | |
yield "\n".join(infos) | |
try: | |
big_npy = ( | |
MiniBatchKMeans( | |
n_clusters=10000, | |
verbose=True, | |
batch_size=256 * config.n_cpu, | |
compute_labels=False, | |
init="random", | |
) | |
.fit(big_npy) | |
.cluster_centers_ | |
) | |
except: | |
info = traceback.format_exc() | |
logger.info(info) | |
infos.append(info) | |
yield "\n".join(infos) | |
np.save("%s/total_fea.npy" % exp_dir, big_npy) | |
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39) | |
infos.append("%s,%s" % (big_npy.shape, n_ivf)) | |
yield "\n".join(infos) | |
index = faiss.index_factory(256 if version19 == "v1" else 768, "IVF%s,Flat" % n_ivf) | |
# index = faiss.index_factory(256if version19=="v1"else 768, "IVF%s,PQ128x4fs,RFlat"%n_ivf) | |
infos.append("training") | |
yield "\n".join(infos) | |
index_ivf = faiss.extract_index_ivf(index) # | |
index_ivf.nprobe = 1 | |
index.train(big_npy) | |
faiss.write_index( | |
index, | |
"%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index" | |
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19), | |
) | |
infos.append("adding") | |
yield "\n".join(infos) | |
batch_size_add = 8192 | |
for i in range(0, big_npy.shape[0], batch_size_add): | |
index.add(big_npy[i : i + batch_size_add]) | |
faiss.write_index( | |
index, | |
"%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index" | |
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19), | |
) | |
infos.append( | |
"成功构建索引,added_IVF%s_Flat_nprobe_%s_%s_%s.index" | |
% (n_ivf, index_ivf.nprobe, exp_dir1, version19) | |
) | |
# faiss.write_index(index, '%s/added_IVF%s_Flat_FastScan_%s.index'%(exp_dir,n_ivf,version19)) | |
# infos.append("成功构建索引,added_IVF%s_Flat_FastScan_%s.index"%(n_ivf,version19)) | |
yield "\n".join(infos) | |
# but5.click(train1key, [exp_dir1, sr2, if_f0_3, trainset_dir4, spk_id5, gpus6, np7, f0method8, save_epoch10, total_epoch11, batch_size12, if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17], info3) | |
def train1key( | |
exp_dir1, | |
sr2, | |
if_f0_3, | |
trainset_dir4, | |
spk_id5, | |
np7, | |
f0method8, | |
save_epoch10, | |
total_epoch11, | |
batch_size12, | |
if_save_latest13, | |
pretrained_G14, | |
pretrained_D15, | |
gpus16, | |
if_cache_gpu17, | |
if_save_every_weights18, | |
version19, | |
gpus_rmvpe, | |
): | |
infos = [] | |
def get_info_str(strr): | |
infos.append(strr) | |
return "\n".join(infos) | |
####### step1:处理数据 | |
yield get_info_str(i18n("step1:正在处理数据")) | |
[get_info_str(_) for _ in preprocess_dataset(trainset_dir4, exp_dir1, sr2, np7)] | |
####### step2a:提取音高 | |
yield get_info_str(i18n("step2:正在提取音高&正在提取特征")) | |
[ | |
get_info_str(_) | |
for _ in extract_f0_feature( | |
gpus16, np7, f0method8, if_f0_3, exp_dir1, version19, gpus_rmvpe | |
) | |
] | |
####### step3a:训练模型 | |
yield get_info_str(i18n("step3a:正在训练模型")) | |
click_train( | |
exp_dir1, | |
sr2, | |
if_f0_3, | |
spk_id5, | |
save_epoch10, | |
total_epoch11, | |
batch_size12, | |
if_save_latest13, | |
pretrained_G14, | |
pretrained_D15, | |
gpus16, | |
if_cache_gpu17, | |
if_save_every_weights18, | |
version19, | |
) | |
yield get_info_str(i18n("训练结束, 您可查看控制台训练日志或实验文件夹下的train.log")) | |
####### step3b:训练索引 | |
[get_info_str(_) for _ in train_index(exp_dir1, version19)] | |
yield get_info_str(i18n("全流程结束!")) | |
# ckpt_path2.change(change_info_,[ckpt_path2],[sr__,if_f0__]) | |
def change_info_(ckpt_path): | |
if not os.path.exists(ckpt_path.replace(os.path.basename(ckpt_path), "train.log")): | |
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"} | |
try: | |
with open( | |
ckpt_path.replace(os.path.basename(ckpt_path), "train.log"), "r" | |
) as f: | |
info = eval(f.read().strip("\n").split("\n")[0].split("\t")[-1]) | |
sr, f0 = info["sample_rate"], info["if_f0"] | |
version = "v2" if ("version" in info and info["version"] == "v2") else "v1" | |
return sr, str(f0), version | |
except: | |
traceback.print_exc() | |
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"} | |
F0GPUVisible = config.dml == False | |
def change_f0_method(f0method8): | |
if f0method8 == "rmvpe_gpu": | |
visible = F0GPUVisible | |
else: | |
visible = False | |
return {"visible": visible, "__type__": "update"} | |
def find_model(): | |
if len(names) > 0: | |
vc.get_vc(sorted(names)[0],None,None) | |
return sorted(names)[0] | |
else: | |
try: | |
gr.Info("Do not forget to choose a model.") | |
except: | |
pass | |
return '' | |
def find_audios(index=False): | |
audio_files=[] | |
if not os.path.exists('./audios'): os.mkdir("./audios") | |
for filename in os.listdir("./audios"): | |
if filename.endswith(('.wav','.mp3','.ogg')): | |
audio_files.append("./audios/"+filename) | |
if index: | |
if len(audio_files) > 0: return sorted(audio_files)[0] | |
else: return "" | |
elif len(audio_files) > 0: return sorted(audio_files) | |
else: return [] | |
def get_index(): | |
if find_model() != '': | |
chosen_model=sorted(names)[0].split(".")[0] | |
logs_path="./logs/"+chosen_model | |
if os.path.exists(logs_path): | |
for file in os.listdir(logs_path): | |
if file.endswith(".index"): | |
return os.path.join(logs_path, file) | |
return '' | |
else: | |
return '' | |
def get_indexes(): | |
indexes_list=[] | |
for dirpath, dirnames, filenames in os.walk("./logs/"): | |
for filename in filenames: | |
if filename.endswith(".index"): | |
indexes_list.append(os.path.join(dirpath,filename)) | |
if len(indexes_list) > 0: | |
return indexes_list | |
else: | |
return '' | |
def save_wav(file): | |
try: | |
file_path=file.name | |
shutil.move(file_path,'./audios') | |
return './audios/'+os.path.basename(file_path) | |
except AttributeError: | |
try: | |
new_name = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")+'.wav' | |
new_path='./audios/'+new_name | |
shutil.move(file,new_path) | |
return new_path | |
except TypeError: | |
return None | |
def download_from_url(url, model): | |
if url == '': | |
return "URL cannot be left empty." | |
if model =='': | |
return "You need to name your model. For example: My-Model" | |
url = url.strip() | |
zip_dirs = ["zips", "unzips"] | |
for directory in zip_dirs: | |
if os.path.exists(directory): | |
shutil.rmtree(directory) | |
os.makedirs("zips", exist_ok=True) | |
os.makedirs("unzips", exist_ok=True) | |
zipfile = model + '.zip' | |
zipfile_path = './zips/' + zipfile | |
try: | |
if "drive.google.com" in url: | |
subprocess.run(["gdown", url, "--fuzzy", "-O", zipfile_path]) | |
elif "mega.nz" in url: | |
m = Mega() | |
m.download_url(url, './zips') | |
else: | |
subprocess.run(["wget", url, "-O", zipfile_path]) | |
for filename in os.listdir("./zips"): | |
if filename.endswith(".zip"): | |
zipfile_path = os.path.join("./zips/",filename) | |
shutil.unpack_archive(zipfile_path, "./unzips", 'zip') | |
else: | |
return "No zipfile found." | |
for root, dirs, files in os.walk('./unzips'): | |
for file in files: | |
file_path = os.path.join(root, file) | |
if file.endswith(".index"): | |
os.mkdir(f'./logs/{model}') | |
shutil.copy2(file_path,f'./logs/{model}') | |
elif "G_" not in file and "D_" not in file and file.endswith(".pth"): | |
shutil.copy(file_path,f'./assets/weights/{model}.pth') | |
shutil.rmtree("zips") | |
shutil.rmtree("unzips") | |
return "Success." | |
except: | |
return "There's been an error." | |
def upload_to_dataset(files, dir): | |
if dir == '': | |
dir = './dataset/'+datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S") | |
if not os.path.exists(dir): | |
os.makedirs(dir) | |
for file in files: | |
path=file.name | |
shutil.copy2(path,dir) | |
try: | |
gr.Info(i18n("处理数据")) | |
except: | |
pass | |
return i18n("处理数据"), {"value":dir,"__type__":"update"} | |
def download_model_files(model): | |
model_found = False | |
index_found = False | |
if os.path.exists(f'./assets/weights/{model}.pth'): model_found = True | |
if os.path.exists(f'./logs/{model}'): | |
for file in os.listdir(f'./logs/{model}'): | |
if file.endswith('.index') and 'added' in file: | |
log_file = file | |
index_found = True | |
if model_found and index_found: | |
return [f'./assets/weights/{model}.pth', f'./logs/{model}/{log_file}'], "Done" | |
elif model_found and not index_found: | |
return f'./assets/weights/{model}.pth', "Could not find Index file." | |
elif index_found and not model_found: | |
return f'./logs/{model}/{log_file}', f'Make sure the Voice Name is correct. I could not find {model}.pth' | |
else: | |
return None, f'Could not find {model}.pth or corresponding Index file.' | |
with gr.Blocks(title="🔊",theme=gr.themes.Base(primary_hue="rose",neutral_hue="zinc")) as app: | |
with gr.Row(): | |
gr.HTML("<img src='file/a.png' alt='image'>") | |
with gr.Tabs(): | |
with gr.TabItem(i18n("模型推理")): | |
with gr.Row(): | |
sid0 = gr.Dropdown(label=i18n("推理音色"), choices=sorted(names), value=find_model()) | |
refresh_button = gr.Button(i18n("刷新音色列表和索引路径"), variant="primary") | |
#clean_button = gr.Button(i18n("卸载音色省显存"), variant="primary") | |
spk_item = gr.Slider( | |
minimum=0, | |
maximum=2333, | |
step=1, | |
label=i18n("请选择说话人id"), | |
value=0, | |
visible=False, | |
interactive=True, | |
) | |
#clean_button.click( | |
# fn=clean, inputs=[], outputs=[sid0], api_name="infer_clean" | |
#) | |
vc_transform0 = gr.Number( | |
label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0 | |
) | |
but0 = gr.Button(i18n("转换"), variant="primary") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
dropbox = gr.File(label="Drop your audio here & hit the Reload button.") | |
with gr.Row(): | |
record_button=gr.Audio(source="microphone", label="OR Record audio.", type="filepath") | |
with gr.Row(): | |
input_audio0 = gr.Dropdown( | |
label=i18n("输入待处理音频文件路径(默认是正确格式示例)"), | |
value=find_audios(True), | |
choices=find_audios() | |
) | |
record_button.change(fn=save_wav, inputs=[record_button], outputs=[input_audio0]) | |
dropbox.upload(fn=save_wav, inputs=[dropbox], outputs=[input_audio0]) | |
with gr.Column(): | |
with gr.Accordion(label=i18n("自动检测index路径,下拉式选择(dropdown)"), open=False): | |
file_index2 = gr.Dropdown( | |
label=i18n("自动检测index路径,下拉式选择(dropdown)"), | |
choices=get_indexes(), | |
interactive=True, | |
value=get_index() | |
) | |
index_rate1 = gr.Slider( | |
minimum=0, | |
maximum=1, | |
label=i18n("检索特征占比"), | |
value=0.66, | |
interactive=True, | |
) | |
vc_output2 = gr.Audio(label=i18n("输出音频(右下角三个点,点了可以下载)")) | |
with gr.Accordion(label=i18n("常规设置"), open=False): | |
f0method0 = gr.Radio( | |
label=i18n( | |
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU" | |
), | |
choices=["pm", "harvest", "crepe", "rmvpe"] | |
if config.dml == False | |
else ["pm", "harvest", "rmvpe"], | |
value="rmvpe", | |
interactive=True, | |
) | |
filter_radius0 = gr.Slider( | |
minimum=0, | |
maximum=7, | |
label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"), | |
value=3, | |
step=1, | |
interactive=True, | |
) | |
resample_sr0 = gr.Slider( | |
minimum=0, | |
maximum=48000, | |
label=i18n("后处理重采样至最终采样率,0为不进行重采样"), | |
value=0, | |
step=1, | |
interactive=True, | |
visible=False | |
) | |
rms_mix_rate0 = gr.Slider( | |
minimum=0, | |
maximum=1, | |
label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"), | |
value=0.21, | |
interactive=True, | |
) | |
protect0 = gr.Slider( | |
minimum=0, | |
maximum=0.5, | |
label=i18n( | |
"保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果" | |
), | |
value=0.33, | |
step=0.01, | |
interactive=True, | |
) | |
file_index1 = gr.Textbox( | |
label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"), | |
value="", | |
interactive=True, | |
visible=False | |
) | |
refresh_button.click( | |
fn=change_choices, | |
inputs=[], | |
outputs=[sid0, file_index2, input_audio0], | |
api_name="infer_refresh", | |
) | |
# file_big_npy1 = gr.Textbox( | |
# label=i18n("特征文件路径"), | |
# value="E:\\codes\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy", | |
# interactive=True, | |
# ) | |
with gr.Row(): | |
f0_file = gr.File(label=i18n("F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调"), visible=False) | |
with gr.Row(): | |
vc_output1 = gr.Textbox(label=i18n("输出信息")) | |
but0.click( | |
vc.vc_single, | |
[ | |
spk_item, | |
input_audio0, | |
vc_transform0, | |
f0_file, | |
f0method0, | |
file_index1, | |
file_index2, | |
# file_big_npy1, | |
index_rate1, | |
filter_radius0, | |
resample_sr0, | |
rms_mix_rate0, | |
protect0, | |
], | |
[vc_output1, vc_output2], | |
api_name="infer_convert", | |
) | |
with gr.Row(): | |
with gr.Accordion(open=False, label=i18n("批量转换, 输入待转换音频文件夹, 或上传多个音频文件, 在指定文件夹(默认opt)下输出转换的音频. ")): | |
with gr.Row(): | |
opt_input = gr.Textbox(label=i18n("指定输出文件夹"), value="opt") | |
vc_transform1 = gr.Number( | |
label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0 | |
) | |
f0method1 = gr.Radio( | |
label=i18n( | |
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU" | |
), | |
choices=["pm", "harvest", "crepe", "rmvpe"] | |
if config.dml == False | |
else ["pm", "harvest", "rmvpe"], | |
value="pm", | |
interactive=True, | |
) | |
with gr.Row(): | |
filter_radius1 = gr.Slider( | |
minimum=0, | |
maximum=7, | |
label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"), | |
value=3, | |
step=1, | |
interactive=True, | |
visible=False | |
) | |
with gr.Row(): | |
file_index3 = gr.Textbox( | |
label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"), | |
value="", | |
interactive=True, | |
visible=False | |
) | |
file_index4 = gr.Dropdown( | |
label=i18n("自动检测index路径,下拉式选择(dropdown)"), | |
choices=sorted(index_paths), | |
interactive=True, | |
visible=False | |
) | |
refresh_button.click( | |
fn=lambda: change_choices()[1], | |
inputs=[], | |
outputs=file_index4, | |
api_name="infer_refresh_batch", | |
) | |
# file_big_npy2 = gr.Textbox( | |
# label=i18n("特征文件路径"), | |
# value="E:\\codes\\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy", | |
# interactive=True, | |
# ) | |
index_rate2 = gr.Slider( | |
minimum=0, | |
maximum=1, | |
label=i18n("检索特征占比"), | |
value=1, | |
interactive=True, | |
visible=False | |
) | |
with gr.Row(): | |
resample_sr1 = gr.Slider( | |
minimum=0, | |
maximum=48000, | |
label=i18n("后处理重采样至最终采样率,0为不进行重采样"), | |
value=0, | |
step=1, | |
interactive=True, | |
visible=False | |
) | |
rms_mix_rate1 = gr.Slider( | |
minimum=0, | |
maximum=1, | |
label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"), | |
value=0.21, | |
interactive=True, | |
) | |
protect1 = gr.Slider( | |
minimum=0, | |
maximum=0.5, | |
label=i18n( | |
"保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果" | |
), | |
value=0.33, | |
step=0.01, | |
interactive=True, | |
) | |
with gr.Row(): | |
dir_input = gr.Textbox( | |
label=i18n("输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)"), | |
value="./audios", | |
) | |
inputs = gr.File( | |
file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹") | |
) | |
with gr.Row(): | |
format1 = gr.Radio( | |
label=i18n("导出文件格式"), | |
choices=["wav", "flac", "mp3", "m4a"], | |
value="wav", | |
interactive=True, | |
) | |
but1 = gr.Button(i18n("转换"), variant="primary") | |
vc_output3 = gr.Textbox(label=i18n("输出信息")) | |
but1.click( | |
vc.vc_multi, | |
[ | |
spk_item, | |
dir_input, | |
opt_input, | |
inputs, | |
vc_transform1, | |
f0method1, | |
file_index1, | |
file_index2, | |
# file_big_npy2, | |
index_rate1, | |
filter_radius1, | |
resample_sr1, | |
rms_mix_rate1, | |
protect1, | |
format1, | |
], | |
[vc_output3], | |
api_name="infer_convert_batch", | |
) | |
sid0.change( | |
fn=vc.get_vc, | |
inputs=[sid0, protect0, protect1], | |
outputs=[spk_item, protect0, protect1, file_index2, file_index4], | |
) | |
with gr.TabItem("Download Model"): | |
with gr.Row(): | |
url=gr.Textbox(label="Enter the URL to the Model:") | |
with gr.Row(): | |
model = gr.Textbox(label="Name your model:") | |
download_button=gr.Button("Download") | |
with gr.Row(): | |
status_bar=gr.Textbox(label="") | |
download_button.click(fn=download_from_url, inputs=[url, model], outputs=[status_bar]) | |
with gr.Row(): | |
gr.Markdown( | |
""" | |
❤️ If you use this and like it, help me keep it.❤️ | |
https://paypal.me/lesantillan | |
""" | |
) | |
with gr.TabItem(i18n("训练")): | |
with gr.Row(): | |
with gr.Column(): | |
exp_dir1 = gr.Textbox(label=i18n("输入实验名"), value="My-Voice") | |
np7 = gr.Slider( | |
minimum=0, | |
maximum=config.n_cpu, | |
step=1, | |
label=i18n("提取音高和处理数据使用的CPU进程数"), | |
value=int(np.ceil(config.n_cpu / 1.5)), | |
interactive=True, | |
) | |
sr2 = gr.Radio( | |
label=i18n("目标采样率"), | |
choices=["40k", "48k"], | |
value="40k", | |
interactive=True, | |
visible=False | |
) | |
if_f0_3 = gr.Radio( | |
label=i18n("模型是否带音高指导(唱歌一定要, 语音可以不要)"), | |
choices=[True, False], | |
value=True, | |
interactive=True, | |
visible=False | |
) | |
version19 = gr.Radio( | |
label=i18n("版本"), | |
choices=["v1", "v2"], | |
value="v2", | |
interactive=True, | |
visible=False, | |
) | |
trainset_dir4 = gr.Textbox( | |
label=i18n("输入训练文件夹路径"), value='./dataset/'+datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S") | |
) | |
easy_uploader = gr.Files(label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹"),file_types=['audio']) | |
but1 = gr.Button(i18n("处理数据"), variant="primary") | |
info1 = gr.Textbox(label=i18n("输出信息"), value="") | |
easy_uploader.upload(fn=upload_to_dataset, inputs=[easy_uploader, trainset_dir4], outputs=[info1, trainset_dir4]) | |
gpus6 = gr.Textbox( | |
label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"), | |
value=gpus, | |
interactive=True, | |
visible=F0GPUVisible, | |
) | |
gpu_info9 = gr.Textbox( | |
label=i18n("显卡信息"), value=gpu_info, visible=F0GPUVisible | |
) | |
spk_id5 = gr.Slider( | |
minimum=0, | |
maximum=4, | |
step=1, | |
label=i18n("请指定说话人id"), | |
value=0, | |
interactive=True, | |
visible=False | |
) | |
but1.click( | |
preprocess_dataset, | |
[trainset_dir4, exp_dir1, sr2, np7], | |
[info1], | |
api_name="train_preprocess", | |
) | |
with gr.Column(): | |
f0method8 = gr.Radio( | |
label=i18n( | |
"选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢,rmvpe效果最好且微吃CPU/GPU" | |
), | |
choices=["pm", "harvest", "dio", "rmvpe", "rmvpe_gpu"], | |
value="rmvpe_gpu", | |
interactive=True, | |
) | |
gpus_rmvpe = gr.Textbox( | |
label=i18n( | |
"rmvpe卡号配置:以-分隔输入使用的不同进程卡号,例如0-0-1使用在卡0上跑2个进程并在卡1上跑1个进程" | |
), | |
value="%s-%s" % (gpus, gpus), | |
interactive=True, | |
visible=F0GPUVisible, | |
) | |
but2 = gr.Button(i18n("特征提取"), variant="primary") | |
info2 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8) | |
f0method8.change( | |
fn=change_f0_method, | |
inputs=[f0method8], | |
outputs=[gpus_rmvpe], | |
) | |
but2.click( | |
extract_f0_feature, | |
[ | |
gpus6, | |
np7, | |
f0method8, | |
if_f0_3, | |
exp_dir1, | |
version19, | |
gpus_rmvpe, | |
], | |
[info2], | |
api_name="train_extract_f0_feature", | |
) | |
with gr.Column(): | |
total_epoch11 = gr.Slider( | |
minimum=2, | |
maximum=1000, | |
step=1, | |
label=i18n("总训练轮数total_epoch"), | |
value=150, | |
interactive=True, | |
) | |
gpus16 = gr.Textbox( | |
label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"), | |
value="0", | |
interactive=True, | |
visible=True | |
) | |
but3 = gr.Button(i18n("训练模型"), variant="primary") | |
but4 = gr.Button(i18n("训练特征索引"), variant="primary") | |
info3 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=10) | |
with gr.Accordion(label=i18n("常规设置"), open=False): | |
save_epoch10 = gr.Slider( | |
minimum=1, | |
maximum=50, | |
step=1, | |
label=i18n("保存频率save_every_epoch"), | |
value=25, | |
interactive=True, | |
) | |
batch_size12 = gr.Slider( | |
minimum=1, | |
maximum=40, | |
step=1, | |
label=i18n("每张显卡的batch_size"), | |
value=default_batch_size, | |
interactive=True, | |
) | |
if_save_latest13 = gr.Radio( | |
label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"), | |
choices=[i18n("是"), i18n("否")], | |
value=i18n("是"), | |
interactive=True, | |
visible=False | |
) | |
if_cache_gpu17 = gr.Radio( | |
label=i18n( | |
"是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速" | |
), | |
choices=[i18n("是"), i18n("否")], | |
value=i18n("否"), | |
interactive=True, | |
) | |
if_save_every_weights18 = gr.Radio( | |
label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"), | |
choices=[i18n("是"), i18n("否")], | |
value=i18n("是"), | |
interactive=True, | |
) | |
with gr.Row(): | |
download_model = gr.Button('5.Download Model') | |
with gr.Row(): | |
model_files = gr.Files(label='Your Model and Index file can be downloaded here:') | |
download_model.click(fn=download_model_files, inputs=[exp_dir1], outputs=[model_files, info3]) | |
with gr.Row(): | |
pretrained_G14 = gr.Textbox( | |
label=i18n("加载预训练底模G路径"), | |
value="assets/pretrained_v2/f0G40k.pth", | |
interactive=True, | |
visible=False | |
) | |
pretrained_D15 = gr.Textbox( | |
label=i18n("加载预训练底模D路径"), | |
value="assets/pretrained_v2/f0D40k.pth", | |
interactive=True, | |
visible=False | |
) | |
sr2.change( | |
change_sr2, | |
[sr2, if_f0_3, version19], | |
[pretrained_G14, pretrained_D15], | |
) | |
version19.change( | |
change_version19, | |
[sr2, if_f0_3, version19], | |
[pretrained_G14, pretrained_D15, sr2], | |
) | |
if_f0_3.change( | |
change_f0, | |
[if_f0_3, sr2, version19], | |
[f0method8, pretrained_G14, pretrained_D15], | |
) | |
with gr.Row(): | |
but5 = gr.Button(i18n("一键训练"), variant="primary", visible=False) | |
but3.click( | |
click_train, | |
[ | |
exp_dir1, | |
sr2, | |
if_f0_3, | |
spk_id5, | |
save_epoch10, | |
total_epoch11, | |
batch_size12, | |
if_save_latest13, | |
pretrained_G14, | |
pretrained_D15, | |
gpus16, | |
if_cache_gpu17, | |
if_save_every_weights18, | |
version19, | |
], | |
info3, | |
api_name="train_start", | |
) | |
but4.click(train_index, [exp_dir1, version19], info3) | |
but5.click( | |
train1key, | |
[ | |
exp_dir1, | |
sr2, | |
if_f0_3, | |
trainset_dir4, | |
spk_id5, | |
np7, | |
f0method8, | |
save_epoch10, | |
total_epoch11, | |
batch_size12, | |
if_save_latest13, | |
pretrained_G14, | |
pretrained_D15, | |
gpus16, | |
if_cache_gpu17, | |
if_save_every_weights18, | |
version19, | |
gpus_rmvpe, | |
], | |
info3, | |
api_name="train_start_all", | |
) | |
if config.iscolab: | |
app.queue(concurrency_count=511, max_size=1022).launch(share=True) | |
else: | |
app.queue(concurrency_count=511, max_size=1022).launch( | |
server_name="0.0.0.0", | |
inbrowser=not config.noautoopen, | |
server_port=config.listen_port, | |
quiet=True, | |
) | |