innnky commited on
Commit
575e55d
1 Parent(s): c65497b

Revert "更新模型,更换为使用@xiaolang 制作的GUI界面"

Browse files

This reverts commit 3fd832e64978fb20395ee550734ae09c23505fb5.

LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2021 Jaehyeon Kim
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
app.py CHANGED
@@ -1,103 +1,120 @@
1
  import gradio as gr
2
- import soundfile
3
- import torch
 
 
4
 
5
- import infer_tool
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
  convert_cnt = [0]
8
- dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
9
- model_name = "83_epochs.pth"
10
- config_name = "nyarumul.json"
11
- net_g_ms, hubert_soft, feature_input, hps_ms = infer_tool.load_model(f"{model_name}", f"configs/{config_name}")
12
-
13
- # 获取config参数
14
- target_sample = hps_ms.data.sampling_rate
15
- spk_dict = {
16
- "猫雷2.0": 0,
17
- "云灏": 2,
18
- "即霜": 3,
19
- "奕兰秋": 4
20
- }
21
-
22
-
23
- def vc_fn(sid, audio_record, audio_upload, tran):
24
- print(sid)
25
- if audio_upload is not None:
26
- audio_path = audio_upload
27
- elif audio_record is not None:
28
- audio_path = audio_record
29
- else:
30
- return "你需要上传wav文件或使用网页内置的录音!", None
31
-
32
- audio, sampling_rate = infer_tool.format_wav(audio_path, target_sample)
33
- duration = audio.shape[0] / sampling_rate
34
- if duration > 60:
35
- return "请上传小于60s的音频,需要转换长音频请使用colab", None
36
 
37
- o_audio, out_sr = infer_tool.infer(audio_path, spk_dict[sid], tran, net_g_ms, hubert_soft, feature_input)
38
- out_path = f"./out_temp.wav"
39
- soundfile.write(out_path, o_audio, target_sample)
40
- infer_tool.f0_plt(audio_path, out_path, tran, hubert_soft, feature_input)
41
- mistake, var = infer_tool.calc_error(audio_path, out_path, tran, feature_input)
42
- return f"半音偏差:{mistake}\n半音方差:{var}", (
43
- target_sample, o_audio), gr.Image.update("temp.jpg")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
 
45
 
46
  app = gr.Blocks()
47
  with app:
48
  with gr.Tabs():
49
  with gr.TabItem("Basic"):
50
- gr.Markdown(value="""
51
- 本模型为sovits_f0(含AI猫雷2.0音色),支持**60s以内**的**无伴奏**wav、mp3(单声道)格式,或使用**网页内置**的录音(二选一)
 
 
 
52
 
53
- 转换效果取决于源音频语气、节奏是否与目标音色相近,以及音域是否超出目标音色音域范围
54
 
55
- 猫雷音色低音音域效果不佳,如转换男声歌声,建议变调升 **6-10key**
56
 
57
- 该模型的 [github仓库链接](https://github.com/innnky/so-vits-svc),如果想自己制作并训练模型可以访问这个 [github仓库](https://github.com/IceKyrin/sovits_guide)
58
 
59
  """)
60
- speaker_id = gr.Dropdown(label="音色", choices=['猫雷2.0', '云灏', '即霜', "奕兰秋"], value="猫雷2.0")
61
- record_input = gr.Audio(source="microphone", label="录制你的声音", type="filepath", elem_id="audio_inputs")
62
- upload_input = gr.Audio(source="upload", label="上传音频(长度小于45秒)", type="filepath",
63
- elem_id="audio_inputs")
64
- vc_transform = gr.Number(label="变调(整数,可以正负,半音数量,升高八度就是12)", value=0)
65
  vc_submit = gr.Button("转换", variant="primary")
66
- out_audio = gr.Audio(label="Output Audio")
67
- gr.Markdown(value="""
68
- 输出信息为音高平均偏差半音数量,体现转换音频的跑调情况(一般平均小于0.5个半音)
69
-
70
- f0曲线可以直观的显示跑调情况,蓝色为输入音高,橙色为合成音频的音高
71
-
72
- 若**只看见橙色**,说明蓝色曲线被覆盖,转换效果较好
73
-
74
- """)
75
- out_message = gr.Textbox(label="跑调误差信息")
76
- gr.Markdown(value="""f0曲线可以直观的显示跑调情况,蓝色为输入音高,橙色为合成音频的音高
77
-
78
- 若**只看见橙色**,说明蓝色曲线被覆盖,转换效果较好
79
-
80
- """)
81
- f0_image = gr.Image(label="f0曲线")
82
- vc_submit.click(vc_fn, [speaker_id, record_input, upload_input, vc_transform],
83
- [out_message, out_audio, f0_image])
84
- with gr.TabItem("使用说明"):
85
- gr.Markdown(value="""
86
- 0、合集:https://github.com/IceKyrin/sovits_guide/blob/main/README.md
87
-
88
- 1、仅支持sovit_f0(sovits2.0)模型
89
-
90
- 2、自行下载hubert-soft-0d54a1f4.pt改名为hubert.pt放置于pth文件夹下(已经下好了)
91
- https://github.com/bshall/hubert/releases/tag/v0.1
92
-
93
- 3、pth文件夹下放置sovits2.0的模型
94
-
95
- 4、与模型配套的xxx.json,需有speaker项——人物列表
96
-
97
- 5、放无伴奏的音频、或网页内置录音,不要放奇奇怪怪的格式
98
-
99
- 6、仅供交流使用,不对用户行为负责
100
-
101
- """)
102
 
103
- app.launch()
 
1
  import gradio as gr
2
+ import os
3
+ os.system('cd monotonic_align && python setup.py build_ext --inplace && cd ..')
4
+
5
+ import logging
6
 
7
+ numba_logger = logging.getLogger('numba')
8
+ numba_logger.setLevel(logging.WARNING)
9
+ import librosa
10
+ import torch
11
+ import commons
12
+ import utils
13
+ from models import SynthesizerTrn
14
+ from text.symbols import symbols
15
+ from text import text_to_sequence
16
+ import numpy as np
17
+ import soundfile as sf
18
+ from preprocess_wave import FeatureInput
19
+
20
+ def resize2d(x, target_len):
21
+ source = np.array(x)
22
+ source[source<0.001] = np.nan
23
+ target = np.interp(np.arange(0, len(source)*target_len, len(source))/ target_len, np.arange(0, len(source)), source)
24
+ res = np.nan_to_num(target)
25
+ return res
26
+
27
+ def transcribe(path, length, transform):
28
+ featur_pit = featureInput.compute_f0(path)
29
+ featur_pit = featur_pit * 2**(transform/12)
30
+ featur_pit = resize2d(featur_pit, length)
31
+ coarse_pit = featureInput.coarse_f0(featur_pit)
32
+ return coarse_pit
33
+
34
+ def get_text(text, hps):
35
+ text_norm = text_to_sequence(text, hps.data.text_cleaners)
36
+ if hps.data.add_blank:
37
+ text_norm = commons.intersperse(text_norm, 0)
38
+ text_norm = torch.LongTensor(text_norm)
39
+ print(text_norm.shape)
40
+ return text_norm
41
 
42
  convert_cnt = [0]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
 
44
+ hps_ms = utils.get_hparams_from_file("configs/nyarumul.json")
45
+ net_g_ms = SynthesizerTrn(
46
+ len(symbols),
47
+ hps_ms.data.filter_length // 2 + 1,
48
+ hps_ms.train.segment_size // hps_ms.data.hop_length,
49
+ n_speakers=hps_ms.data.n_speakers,
50
+ **hps_ms.model)
51
+
52
+ featureInput = FeatureInput(hps_ms.data.sampling_rate, hps_ms.data.hop_length)
53
+
54
+
55
+ hubert = torch.hub.load("bshall/hubert:main", "hubert_soft")
56
+
57
+ _ = utils.load_checkpoint("nyarumodel.pth", net_g_ms, None)
58
+
59
+ def vc_fn(sid,random1, input_audio,vc_transform):
60
+ if input_audio is None:
61
+ return "You need to upload an audio", None
62
+ sampling_rate, audio = input_audio
63
+ # print(audio.shape,sampling_rate)
64
+ duration = audio.shape[0] / sampling_rate
65
+ if duration > 45:
66
+ return "请上传小于45s的音频,需要转换长音频请使用colab", None
67
+ audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
68
+ if len(audio.shape) > 1:
69
+ audio = librosa.to_mono(audio.transpose(1, 0))
70
+ if sampling_rate != 16000:
71
+ audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
72
+
73
+ source = torch.FloatTensor(audio).unsqueeze(0).unsqueeze(0)
74
+ print(source.shape)
75
+ with torch.inference_mode():
76
+ units = hubert.units(source)
77
+ soft = units.squeeze(0).numpy()
78
+ audio22050 = librosa.resample(audio, orig_sr=16000, target_sr=22050)
79
+ sf.write("temp.wav", audio22050, 22050)
80
+ pitch = transcribe("temp.wav", soft.shape[0], vc_transform)
81
+ pitch = torch.LongTensor(pitch).unsqueeze(0)
82
+ sid = torch.LongTensor([0]) if sid == "猫雷" else torch.LongTensor([1])
83
+ stn_tst = torch.FloatTensor(soft)
84
+ with torch.no_grad():
85
+ x_tst = stn_tst.unsqueeze(0)
86
+ x_tst_lengths = torch.LongTensor([stn_tst.size(0)])
87
+ audio = net_g_ms.infer(x_tst, x_tst_lengths, pitch=pitch,sid=sid, noise_scale=float(random1),
88
+ noise_scale_w=0.1, length_scale=1)[0][0, 0].data.float().numpy()
89
+ convert_cnt[0] += 1
90
+ print(convert_cnt[0])
91
+ return "Success", (hps_ms.data.sampling_rate, audio)
92
 
93
 
94
  app = gr.Blocks()
95
  with app:
96
  with gr.Tabs():
97
  with gr.TabItem("Basic"):
98
+ gr.Markdown(value="""本模型相比与前一个模型,音质和音准方面有一定的提升,但是低音音域目前存在较大问题。
99
+
100
+ 目前猫雷模型能够唱的最低音为#G3(207hz) 低于该音会当场爆炸(之前的模型只是会跑调),
101
+
102
+ 因此请不要让这个模型唱男声的音高,请使用变调功能将音域移动至207hz以上。
103
 
104
+ 该模型的 [github仓库链接](https://github.com/innnky/so-vits-svc)
105
 
106
+ 如果想自己制作并训练模型可以访问这个 [github仓库](https://github.com/IceKyrin/sovits_guide)
107
 
108
+ ps: 更新了一下模型,现在和视频中不是一个同一个模型,b站视频中的模型在git历史中(因为之前数据集中似乎混入了一些杂项导致音色有些偏离猫雷音色)
109
 
110
  """)
111
+ sid = gr.Dropdown(label="音色",choices=['猫雷'], value="猫雷")
112
+ vc_input3 = gr.Audio(label="上传音频(长度小于45秒)")
113
+ vc_transform = gr.Number(label="变调(整数,可以正负,半音数量,升高八度就是12)",value=0)
114
+ random1 = gr.Number(label="随机化程度,似乎会影响音质,建议保持默认",value=0.4)
 
115
  vc_submit = gr.Button("转换", variant="primary")
116
+ vc_output1 = gr.Textbox(label="Output Message")
117
+ vc_output2 = gr.Audio(label="Output Audio")
118
+ vc_submit.click(vc_fn, [sid,random1, vc_input3, vc_transform], [vc_output1, vc_output2])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
119
 
120
+ app.launch()
attentions.py CHANGED
@@ -1,311 +1,303 @@
 
1
  import math
2
-
3
  import torch
4
  from torch import nn
5
- from torch.nn import functional as t_func
6
 
7
  import commons
 
8
  from modules import LayerNorm
9
-
10
 
11
  class Encoder(nn.Module):
12
- def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4,
13
- **kwargs):
14
- super().__init__()
15
- self.hidden_channels = hidden_channels
16
- self.filter_channels = filter_channels
17
- self.n_heads = n_heads
18
- self.n_layers = n_layers
19
- self.kernel_size = kernel_size
20
- self.p_dropout = p_dropout
21
- self.window_size = window_size
22
-
23
- self.drop = nn.Dropout(p_dropout)
24
- self.attn_layers = nn.ModuleList()
25
- self.norm_layers_1 = nn.ModuleList()
26
- self.ffn_layers = nn.ModuleList()
27
- self.norm_layers_2 = nn.ModuleList()
28
- for i in range(self.n_layers):
29
- self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout,
30
- window_size=window_size))
31
- self.norm_layers_1.append(LayerNorm(hidden_channels))
32
- self.ffn_layers.append(
33
- FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
34
- self.norm_layers_2.append(LayerNorm(hidden_channels))
35
-
36
- def forward(self, x, x_mask):
37
- attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
38
- x = x * x_mask
39
- for i in range(self.n_layers):
40
- y = self.attn_layers[i](x, x, attn_mask)
41
- y = self.drop(y)
42
- x = self.norm_layers_1[i](x + y)
43
-
44
- y = self.ffn_layers[i](x, x_mask)
45
- y = self.drop(y)
46
- x = self.norm_layers_2[i](x + y)
47
- x = x * x_mask
48
- return x
49
 
50
 
51
  class Decoder(nn.Module):
52
- def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0.,
53
- proximal_bias=False, proximal_init=True, **kwargs):
54
- super().__init__()
55
- self.hidden_channels = hidden_channels
56
- self.filter_channels = filter_channels
57
- self.n_heads = n_heads
58
- self.n_layers = n_layers
59
- self.kernel_size = kernel_size
60
- self.p_dropout = p_dropout
61
- self.proximal_bias = proximal_bias
62
- self.proximal_init = proximal_init
63
-
64
- self.drop = nn.Dropout(p_dropout)
65
- self.self_attn_layers = nn.ModuleList()
66
- self.norm_layers_0 = nn.ModuleList()
67
- self.encdec_attn_layers = nn.ModuleList()
68
- self.norm_layers_1 = nn.ModuleList()
69
- self.ffn_layers = nn.ModuleList()
70
- self.norm_layers_2 = nn.ModuleList()
71
- for i in range(self.n_layers):
72
- self.self_attn_layers.append(
73
- MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout,
74
- proximal_bias=proximal_bias, proximal_init=proximal_init))
75
- self.norm_layers_0.append(LayerNorm(hidden_channels))
76
- self.encdec_attn_layers.append(
77
- MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
78
- self.norm_layers_1.append(LayerNorm(hidden_channels))
79
- self.ffn_layers.append(
80
- FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
81
- self.norm_layers_2.append(LayerNorm(hidden_channels))
82
-
83
- def forward(self, x, x_mask, h, h_mask):
84
- """
85
- x: decoder input
86
- h: encoder output
87
- """
88
- self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
89
- encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
90
- x = x * x_mask
91
- for i in range(self.n_layers):
92
- y = self.self_attn_layers[i](x, x, self_attn_mask)
93
- y = self.drop(y)
94
- x = self.norm_layers_0[i](x + y)
95
-
96
- y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
97
- y = self.drop(y)
98
- x = self.norm_layers_1[i](x + y)
99
-
100
- y = self.ffn_layers[i](x, x_mask)
101
- y = self.drop(y)
102
- x = self.norm_layers_2[i](x + y)
103
- x = x * x_mask
104
- return x
105
 
106
 
107
  class MultiHeadAttention(nn.Module):
108
- def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True,
109
- block_length=None, proximal_bias=False, proximal_init=False):
110
- super().__init__()
111
- assert channels % n_heads == 0
112
-
113
- self.channels = channels
114
- self.out_channels = out_channels
115
- self.n_heads = n_heads
116
- self.p_dropout = p_dropout
117
- self.window_size = window_size
118
- self.heads_share = heads_share
119
- self.block_length = block_length
120
- self.proximal_bias = proximal_bias
121
- self.proximal_init = proximal_init
122
- self.attn = None
123
-
124
- self.k_channels = channels // n_heads
125
- self.conv_q = nn.Conv1d(channels, channels, 1)
126
- self.conv_k = nn.Conv1d(channels, channels, 1)
127
- self.conv_v = nn.Conv1d(channels, channels, 1)
128
- self.conv_o = nn.Conv1d(channels, out_channels, 1)
129
- self.drop = nn.Dropout(p_dropout)
130
-
131
- if window_size is not None:
132
- n_heads_rel = 1 if heads_share else n_heads
133
- rel_stddev = self.k_channels ** -0.5
134
- self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
135
- self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
136
-
137
- nn.init.xavier_uniform_(self.conv_q.weight)
138
- nn.init.xavier_uniform_(self.conv_k.weight)
139
- nn.init.xavier_uniform_(self.conv_v.weight)
140
- if proximal_init:
141
- with torch.no_grad():
142
- self.conv_k.weight.copy_(self.conv_q.weight)
143
- self.conv_k.bias.copy_(self.conv_q.bias)
144
-
145
- def forward(self, x, c, attn_mask=None):
146
- q = self.conv_q(x)
147
- k = self.conv_k(c)
148
- v = self.conv_v(c)
149
-
150
- x, self.attn = self.attention(q, k, v, mask=attn_mask)
151
-
152
- x = self.conv_o(x)
153
- return x
154
-
155
- def attention(self, query, key, value, mask=None):
156
- # reshape [b, d, t] -> [b, n_h, t, d_k]
157
- b, d, t_s, t_t = (*key.size(), query.size(2))
158
- query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
159
- key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
160
- value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
161
-
162
- scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
163
- if self.window_size is not None:
164
- assert t_s == t_t, "Relative attention is only available for self-attention."
165
- key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
166
- rel_logits = self._matmul_with_relative_keys(query / math.sqrt(self.k_channels), key_relative_embeddings)
167
- scores_local = self._relative_position_to_absolute_position(rel_logits)
168
- scores = scores + scores_local
169
- if self.proximal_bias:
170
- assert t_s == t_t, "Proximal bias is only available for self-attention."
171
- scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
172
- if mask is not None:
173
- scores = scores.masked_fill(mask == 0, -1e4)
174
- if self.block_length is not None:
175
- assert t_s == t_t, "Local attention is only available for self-attention."
176
- block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
177
- scores = scores.masked_fill(block_mask == 0, -1e4)
178
- p_attn = t_func.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
179
- p_attn = self.drop(p_attn)
180
- output = torch.matmul(p_attn, value)
181
- if self.window_size is not None:
182
- relative_weights = self._absolute_position_to_relative_position(p_attn)
183
- value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
184
- output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
185
- output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
186
- return output, p_attn
187
-
188
- def _matmul_with_relative_values(self, x, y):
189
- """
190
- x: [b, h, l, m]
191
- y: [h or 1, m, d]
192
- ret: [b, h, l, d]
193
- """
194
- ret = torch.matmul(x, y.unsqueeze(0))
195
- return ret
196
-
197
- def _matmul_with_relative_keys(self, x, y):
198
- """
199
- x: [b, h, l, d]
200
- y: [h or 1, m, d]
201
- ret: [b, h, l, m]
202
- """
203
- ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
204
- return ret
205
-
206
- def _get_relative_embeddings(self, relative_embeddings, length):
207
- max_relative_position = 2 * self.window_size + 1
208
- # Pad first before slice to avoid using cond ops.
209
- pad_length = max(length - (self.window_size + 1), 0)
210
- slice_start_position = max((self.window_size + 1) - length, 0)
211
- slice_end_position = slice_start_position + 2 * length - 1
212
- if pad_length > 0:
213
- padded_relative_embeddings = t_func.pad(
214
- relative_embeddings,
215
- commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
216
- else:
217
- padded_relative_embeddings = relative_embeddings
218
- used_relative_embeddings = padded_relative_embeddings[:, slice_start_position:slice_end_position]
219
- return used_relative_embeddings
220
-
221
- def _relative_position_to_absolute_position(self, x):
222
- """
223
- x: [b, h, l, 2*l-1]
224
- ret: [b, h, l, l]
225
- """
226
- batch, heads, length, _ = x.size()
227
- # Concat columns of pad to shift from relative to absolute indexing.
228
- x = t_func.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
229
-
230
- # Concat extra elements so to add up to shape (len+1, 2*len-1).
231
- x_flat = x.view([batch, heads, length * 2 * length])
232
- x_flat = t_func.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]]))
233
-
234
- # Reshape and slice out the padded elements.
235
- x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[:, :, :length, length - 1:]
236
- return x_final
237
-
238
- def _absolute_position_to_relative_position(self, x):
239
- """
240
- x: [b, h, l, l]
241
- ret: [b, h, l, 2*l-1]
242
- """
243
- batch, heads, length, _ = x.size()
244
- # padd along column
245
- x = t_func.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]]))
246
- x_flat = x.view([batch, heads, length ** 2 + length * (length - 1)])
247
- # add 0's in the beginning that will skew the elements after reshape
248
- x_flat = t_func.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
249
- x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
250
- return x_final
251
-
252
- def _attention_bias_proximal(self, length):
253
- """Bias for self-attention to encourage attention to close positions.
254
- Args:
255
- length: an integer scalar.
256
- Returns:
257
- a Tensor with shape [1, 1, length, length]
258
- """
259
- r = torch.arange(length, dtype=torch.float32)
260
- diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
261
- return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
262
 
263
 
264
  class FFN(nn.Module):
265
- def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None,
266
- causal=False):
267
- super().__init__()
268
- self.in_channels = in_channels
269
- self.out_channels = out_channels
270
- self.filter_channels = filter_channels
271
- self.kernel_size = kernel_size
272
- self.p_dropout = p_dropout
273
- self.activation = activation
274
- self.causal = causal
275
-
276
- if causal:
277
- self.padding = self._causal_padding
278
- else:
279
- self.padding = self._same_padding
280
-
281
- self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
282
- self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
283
- self.drop = nn.Dropout(p_dropout)
284
-
285
- def forward(self, x, x_mask):
286
- x = self.conv_1(self.padding(x * x_mask))
287
- if self.activation == "gelu":
288
- x = x * torch.sigmoid(1.702 * x)
289
- else:
290
- x = torch.relu(x)
291
- x = self.drop(x)
292
- x = self.conv_2(self.padding(x * x_mask))
293
- return x * x_mask
294
-
295
- def _causal_padding(self, x):
296
- if self.kernel_size == 1:
297
- return x
298
- pad_l = self.kernel_size - 1
299
- pad_r = 0
300
- padding = [[0, 0], [0, 0], [pad_l, pad_r]]
301
- x = t_func.pad(x, commons.convert_pad_shape(padding))
302
- return x
303
-
304
- def _same_padding(self, x):
305
- if self.kernel_size == 1:
306
- return x
307
- pad_l = (self.kernel_size - 1) // 2
308
- pad_r = self.kernel_size // 2
309
- padding = [[0, 0], [0, 0], [pad_l, pad_r]]
310
- x = t_func.pad(x, commons.convert_pad_shape(padding))
311
- return x
 
1
+ import copy
2
  import math
3
+ import numpy as np
4
  import torch
5
  from torch import nn
6
+ from torch.nn import functional as F
7
 
8
  import commons
9
+ import modules
10
  from modules import LayerNorm
11
+
12
 
13
  class Encoder(nn.Module):
14
+ def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs):
15
+ super().__init__()
16
+ self.hidden_channels = hidden_channels
17
+ self.filter_channels = filter_channels
18
+ self.n_heads = n_heads
19
+ self.n_layers = n_layers
20
+ self.kernel_size = kernel_size
21
+ self.p_dropout = p_dropout
22
+ self.window_size = window_size
23
+
24
+ self.drop = nn.Dropout(p_dropout)
25
+ self.attn_layers = nn.ModuleList()
26
+ self.norm_layers_1 = nn.ModuleList()
27
+ self.ffn_layers = nn.ModuleList()
28
+ self.norm_layers_2 = nn.ModuleList()
29
+ for i in range(self.n_layers):
30
+ self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
31
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
32
+ self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
33
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
34
+
35
+ def forward(self, x, x_mask):
36
+ attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
37
+ x = x * x_mask
38
+ for i in range(self.n_layers):
39
+ y = self.attn_layers[i](x, x, attn_mask)
40
+ y = self.drop(y)
41
+ x = self.norm_layers_1[i](x + y)
42
+
43
+ y = self.ffn_layers[i](x, x_mask)
44
+ y = self.drop(y)
45
+ x = self.norm_layers_2[i](x + y)
46
+ x = x * x_mask
47
+ return x
 
 
 
48
 
49
 
50
  class Decoder(nn.Module):
51
+ def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs):
52
+ super().__init__()
53
+ self.hidden_channels = hidden_channels
54
+ self.filter_channels = filter_channels
55
+ self.n_heads = n_heads
56
+ self.n_layers = n_layers
57
+ self.kernel_size = kernel_size
58
+ self.p_dropout = p_dropout
59
+ self.proximal_bias = proximal_bias
60
+ self.proximal_init = proximal_init
61
+
62
+ self.drop = nn.Dropout(p_dropout)
63
+ self.self_attn_layers = nn.ModuleList()
64
+ self.norm_layers_0 = nn.ModuleList()
65
+ self.encdec_attn_layers = nn.ModuleList()
66
+ self.norm_layers_1 = nn.ModuleList()
67
+ self.ffn_layers = nn.ModuleList()
68
+ self.norm_layers_2 = nn.ModuleList()
69
+ for i in range(self.n_layers):
70
+ self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init))
71
+ self.norm_layers_0.append(LayerNorm(hidden_channels))
72
+ self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
73
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
74
+ self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
75
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
76
+
77
+ def forward(self, x, x_mask, h, h_mask):
78
+ """
79
+ x: decoder input
80
+ h: encoder output
81
+ """
82
+ self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
83
+ encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
84
+ x = x * x_mask
85
+ for i in range(self.n_layers):
86
+ y = self.self_attn_layers[i](x, x, self_attn_mask)
87
+ y = self.drop(y)
88
+ x = self.norm_layers_0[i](x + y)
89
+
90
+ y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
91
+ y = self.drop(y)
92
+ x = self.norm_layers_1[i](x + y)
93
+
94
+ y = self.ffn_layers[i](x, x_mask)
95
+ y = self.drop(y)
96
+ x = self.norm_layers_2[i](x + y)
97
+ x = x * x_mask
98
+ return x
 
 
 
 
 
99
 
100
 
101
  class MultiHeadAttention(nn.Module):
102
+ def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
103
+ super().__init__()
104
+ assert channels % n_heads == 0
105
+
106
+ self.channels = channels
107
+ self.out_channels = out_channels
108
+ self.n_heads = n_heads
109
+ self.p_dropout = p_dropout
110
+ self.window_size = window_size
111
+ self.heads_share = heads_share
112
+ self.block_length = block_length
113
+ self.proximal_bias = proximal_bias
114
+ self.proximal_init = proximal_init
115
+ self.attn = None
116
+
117
+ self.k_channels = channels // n_heads
118
+ self.conv_q = nn.Conv1d(channels, channels, 1)
119
+ self.conv_k = nn.Conv1d(channels, channels, 1)
120
+ self.conv_v = nn.Conv1d(channels, channels, 1)
121
+ self.conv_o = nn.Conv1d(channels, out_channels, 1)
122
+ self.drop = nn.Dropout(p_dropout)
123
+
124
+ if window_size is not None:
125
+ n_heads_rel = 1 if heads_share else n_heads
126
+ rel_stddev = self.k_channels**-0.5
127
+ self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
128
+ self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
129
+
130
+ nn.init.xavier_uniform_(self.conv_q.weight)
131
+ nn.init.xavier_uniform_(self.conv_k.weight)
132
+ nn.init.xavier_uniform_(self.conv_v.weight)
133
+ if proximal_init:
134
+ with torch.no_grad():
135
+ self.conv_k.weight.copy_(self.conv_q.weight)
136
+ self.conv_k.bias.copy_(self.conv_q.bias)
137
+
138
+ def forward(self, x, c, attn_mask=None):
139
+ q = self.conv_q(x)
140
+ k = self.conv_k(c)
141
+ v = self.conv_v(c)
142
+
143
+ x, self.attn = self.attention(q, k, v, mask=attn_mask)
144
+
145
+ x = self.conv_o(x)
146
+ return x
147
+
148
+ def attention(self, query, key, value, mask=None):
149
+ # reshape [b, d, t] -> [b, n_h, t, d_k]
150
+ b, d, t_s, t_t = (*key.size(), query.size(2))
151
+ query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
152
+ key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
153
+ value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
154
+
155
+ scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
156
+ if self.window_size is not None:
157
+ assert t_s == t_t, "Relative attention is only available for self-attention."
158
+ key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
159
+ rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings)
160
+ scores_local = self._relative_position_to_absolute_position(rel_logits)
161
+ scores = scores + scores_local
162
+ if self.proximal_bias:
163
+ assert t_s == t_t, "Proximal bias is only available for self-attention."
164
+ scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
165
+ if mask is not None:
166
+ scores = scores.masked_fill(mask == 0, -1e4)
167
+ if self.block_length is not None:
168
+ assert t_s == t_t, "Local attention is only available for self-attention."
169
+ block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
170
+ scores = scores.masked_fill(block_mask == 0, -1e4)
171
+ p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
172
+ p_attn = self.drop(p_attn)
173
+ output = torch.matmul(p_attn, value)
174
+ if self.window_size is not None:
175
+ relative_weights = self._absolute_position_to_relative_position(p_attn)
176
+ value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
177
+ output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
178
+ output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
179
+ return output, p_attn
180
+
181
+ def _matmul_with_relative_values(self, x, y):
182
+ """
183
+ x: [b, h, l, m]
184
+ y: [h or 1, m, d]
185
+ ret: [b, h, l, d]
186
+ """
187
+ ret = torch.matmul(x, y.unsqueeze(0))
188
+ return ret
189
+
190
+ def _matmul_with_relative_keys(self, x, y):
191
+ """
192
+ x: [b, h, l, d]
193
+ y: [h or 1, m, d]
194
+ ret: [b, h, l, m]
195
+ """
196
+ ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
197
+ return ret
198
+
199
+ def _get_relative_embeddings(self, relative_embeddings, length):
200
+ max_relative_position = 2 * self.window_size + 1
201
+ # Pad first before slice to avoid using cond ops.
202
+ pad_length = max(length - (self.window_size + 1), 0)
203
+ slice_start_position = max((self.window_size + 1) - length, 0)
204
+ slice_end_position = slice_start_position + 2 * length - 1
205
+ if pad_length > 0:
206
+ padded_relative_embeddings = F.pad(
207
+ relative_embeddings,
208
+ commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
209
+ else:
210
+ padded_relative_embeddings = relative_embeddings
211
+ used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position]
212
+ return used_relative_embeddings
213
+
214
+ def _relative_position_to_absolute_position(self, x):
215
+ """
216
+ x: [b, h, l, 2*l-1]
217
+ ret: [b, h, l, l]
218
+ """
219
+ batch, heads, length, _ = x.size()
220
+ # Concat columns of pad to shift from relative to absolute indexing.
221
+ x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))
222
+
223
+ # Concat extra elements so to add up to shape (len+1, 2*len-1).
224
+ x_flat = x.view([batch, heads, length * 2 * length])
225
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]]))
226
+
227
+ # Reshape and slice out the padded elements.
228
+ x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
229
+ return x_final
230
+
231
+ def _absolute_position_to_relative_position(self, x):
232
+ """
233
+ x: [b, h, l, l]
234
+ ret: [b, h, l, 2*l-1]
235
+ """
236
+ batch, heads, length, _ = x.size()
237
+ # padd along column
238
+ x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]))
239
+ x_flat = x.view([batch, heads, length**2 + length*(length -1)])
240
+ # add 0's in the beginning that will skew the elements after reshape
241
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
242
+ x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:]
243
+ return x_final
244
+
245
+ def _attention_bias_proximal(self, length):
246
+ """Bias for self-attention to encourage attention to close positions.
247
+ Args:
248
+ length: an integer scalar.
249
+ Returns:
250
+ a Tensor with shape [1, 1, length, length]
251
+ """
252
+ r = torch.arange(length, dtype=torch.float32)
253
+ diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
254
+ return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
 
255
 
256
 
257
  class FFN(nn.Module):
258
+ def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
259
+ super().__init__()
260
+ self.in_channels = in_channels
261
+ self.out_channels = out_channels
262
+ self.filter_channels = filter_channels
263
+ self.kernel_size = kernel_size
264
+ self.p_dropout = p_dropout
265
+ self.activation = activation
266
+ self.causal = causal
267
+
268
+ if causal:
269
+ self.padding = self._causal_padding
270
+ else:
271
+ self.padding = self._same_padding
272
+
273
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
274
+ self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
275
+ self.drop = nn.Dropout(p_dropout)
276
+
277
+ def forward(self, x, x_mask):
278
+ x = self.conv_1(self.padding(x * x_mask))
279
+ if self.activation == "gelu":
280
+ x = x * torch.sigmoid(1.702 * x)
281
+ else:
282
+ x = torch.relu(x)
283
+ x = self.drop(x)
284
+ x = self.conv_2(self.padding(x * x_mask))
285
+ return x * x_mask
286
+
287
+ def _causal_padding(self, x):
288
+ if self.kernel_size == 1:
289
+ return x
290
+ pad_l = self.kernel_size - 1
291
+ pad_r = 0
292
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
293
+ x = F.pad(x, commons.convert_pad_shape(padding))
294
+ return x
295
+
296
+ def _same_padding(self, x):
297
+ if self.kernel_size == 1:
298
+ return x
299
+ pad_l = (self.kernel_size - 1) // 2
300
+ pad_r = self.kernel_size // 2
301
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
302
+ x = F.pad(x, commons.convert_pad_shape(padding))
303
+ return x
 
commons.py CHANGED
@@ -1,160 +1,161 @@
1
  import math
2
-
3
  import torch
4
- from torch.nn import functional as t_func
 
5
 
6
 
7
  def init_weights(m, mean=0.0, std=0.01):
8
- classname = m.__class__.__name__
9
- if classname.find("Conv") != -1:
10
- m.weight.data.normal_(mean, std)
11
 
12
 
13
  def get_padding(kernel_size, dilation=1):
14
- return int((kernel_size * dilation - dilation) / 2)
15
 
16
 
17
  def convert_pad_shape(pad_shape):
18
- l = pad_shape[::-1]
19
- pad_shape = [item for sublist in l for item in sublist]
20
- return pad_shape
21
 
22
 
23
  def intersperse(lst, item):
24
- result = [item] * (len(lst) * 2 + 1)
25
- result[1::2] = lst
26
- return result
27
 
28
 
29
  def kl_divergence(m_p, logs_p, m_q, logs_q):
30
- """KL(P||Q)"""
31
- kl = (logs_q - logs_p) - 0.5
32
- kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2. * logs_q)
33
- return kl
34
 
35
 
36
  def rand_gumbel(shape):
37
- """Sample from the Gumbel distribution, protect from overflows."""
38
- uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
39
- return -torch.log(-torch.log(uniform_samples))
40
 
41
 
42
  def rand_gumbel_like(x):
43
- g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
44
- return g
45
 
46
 
47
  def slice_segments(x, ids_str, segment_size=4):
48
- ret = torch.zeros_like(x[:, :, :segment_size])
49
- for i in range(x.size(0)):
50
- idx_str = ids_str[i]
51
- idx_end = idx_str + segment_size
52
- ret[i] = x[i, :, idx_str:idx_end]
53
- return ret
54
 
55
 
56
  def rand_slice_segments(x, x_lengths=None, segment_size=4):
57
- b, d, t = x.size()
58
- if x_lengths is None:
59
- x_lengths = t
60
- ids_str_max = x_lengths - segment_size + 1
61
- ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
62
- ret = slice_segments(x, ids_str, segment_size)
63
- return ret, ids_str
64
 
65
 
66
  def get_timing_signal_1d(
67
- length, channels, min_timescale=1.0, max_timescale=1.0e4):
68
- position = torch.arange(length, dtype=torch.float)
69
- num_timescales = channels // 2
70
- log_timescale_increment = (
71
- math.log(float(max_timescale) / float(min_timescale)) /
72
- (num_timescales - 1))
73
- inv_timescales = min_timescale * torch.exp(
74
- torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment)
75
- scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
76
- signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
77
- signal = t_func.pad(signal, [0, 0, 0, channels % 2])
78
- signal = signal.view(1, channels, length)
79
- return signal
80
 
81
 
82
  def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
83
- b, channels, length = x.size()
84
- signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
85
- return x + signal.to(dtype=x.dtype, device=x.device)
86
 
87
 
88
  def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
89
- b, channels, length = x.size()
90
- signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
91
- return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
92
 
93
 
94
  def subsequent_mask(length):
95
- mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
96
- return mask
97
 
98
 
99
  @torch.jit.script
100
  def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
101
- n_channels_int = n_channels[0]
102
- in_act = input_a + input_b
103
- t_act = torch.tanh(in_act[:, :n_channels_int, :])
104
- s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
105
- acts = t_act * s_act
106
- return acts
107
 
108
 
109
  def convert_pad_shape(pad_shape):
110
- l = pad_shape[::-1]
111
- pad_shape = [item for sublist in l for item in sublist]
112
- return pad_shape
113
 
114
 
115
  def shift_1d(x):
116
- x = t_func.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
117
- return x
118
 
119
 
120
  def sequence_mask(length, max_length=None):
121
- if max_length is None:
122
- max_length = length.max()
123
- x = torch.arange(max_length, dtype=length.dtype, device=length.device)
124
- return x.unsqueeze(0) < length.unsqueeze(1)
125
 
126
 
127
  def generate_path(duration, mask):
128
- """
129
- duration: [b, 1, t_x]
130
- mask: [b, 1, t_y, t_x]
131
- """
132
- device = duration.device
133
-
134
- b, _, t_y, t_x = mask.shape
135
- cum_duration = torch.cumsum(duration, -1)
136
-
137
- cum_duration_flat = cum_duration.view(b * t_x)
138
- path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
139
- path = path.view(b, t_x, t_y)
140
- path = path - t_func.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
141
- path = path.unsqueeze(1).transpose(2, 3) * mask
142
- return path
143
 
144
 
145
  def clip_grad_value_(parameters, clip_value, norm_type=2):
146
- if isinstance(parameters, torch.Tensor):
147
- parameters = [parameters]
148
- parameters = list(filter(lambda para: para.grad is not None, parameters))
149
- norm_type = float(norm_type)
 
 
 
 
 
 
 
150
  if clip_value is not None:
151
- clip_value = float(clip_value)
152
-
153
- total_norm = 0
154
- for p in parameters:
155
- param_norm = p.grad.data.norm(norm_type)
156
- total_norm += param_norm.item() ** norm_type
157
- if clip_value is not None:
158
- p.grad.data.clamp_(min=-clip_value, max=clip_value)
159
- total_norm = total_norm ** (1. / norm_type)
160
- return total_norm
 
1
  import math
2
+ import numpy as np
3
  import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
 
7
 
8
  def init_weights(m, mean=0.0, std=0.01):
9
+ classname = m.__class__.__name__
10
+ if classname.find("Conv") != -1:
11
+ m.weight.data.normal_(mean, std)
12
 
13
 
14
  def get_padding(kernel_size, dilation=1):
15
+ return int((kernel_size*dilation - dilation)/2)
16
 
17
 
18
  def convert_pad_shape(pad_shape):
19
+ l = pad_shape[::-1]
20
+ pad_shape = [item for sublist in l for item in sublist]
21
+ return pad_shape
22
 
23
 
24
  def intersperse(lst, item):
25
+ result = [item] * (len(lst) * 2 + 1)
26
+ result[1::2] = lst
27
+ return result
28
 
29
 
30
  def kl_divergence(m_p, logs_p, m_q, logs_q):
31
+ """KL(P||Q)"""
32
+ kl = (logs_q - logs_p) - 0.5
33
+ kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q)**2)) * torch.exp(-2. * logs_q)
34
+ return kl
35
 
36
 
37
  def rand_gumbel(shape):
38
+ """Sample from the Gumbel distribution, protect from overflows."""
39
+ uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
40
+ return -torch.log(-torch.log(uniform_samples))
41
 
42
 
43
  def rand_gumbel_like(x):
44
+ g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
45
+ return g
46
 
47
 
48
  def slice_segments(x, ids_str, segment_size=4):
49
+ ret = torch.zeros_like(x[:, :, :segment_size])
50
+ for i in range(x.size(0)):
51
+ idx_str = ids_str[i]
52
+ idx_end = idx_str + segment_size
53
+ ret[i] = x[i, :, idx_str:idx_end]
54
+ return ret
55
 
56
 
57
  def rand_slice_segments(x, x_lengths=None, segment_size=4):
58
+ b, d, t = x.size()
59
+ if x_lengths is None:
60
+ x_lengths = t
61
+ ids_str_max = x_lengths - segment_size + 1
62
+ ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
63
+ ret = slice_segments(x, ids_str, segment_size)
64
+ return ret, ids_str
65
 
66
 
67
  def get_timing_signal_1d(
68
+ length, channels, min_timescale=1.0, max_timescale=1.0e4):
69
+ position = torch.arange(length, dtype=torch.float)
70
+ num_timescales = channels // 2
71
+ log_timescale_increment = (
72
+ math.log(float(max_timescale) / float(min_timescale)) /
73
+ (num_timescales - 1))
74
+ inv_timescales = min_timescale * torch.exp(
75
+ torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment)
76
+ scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
77
+ signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
78
+ signal = F.pad(signal, [0, 0, 0, channels % 2])
79
+ signal = signal.view(1, channels, length)
80
+ return signal
81
 
82
 
83
  def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
84
+ b, channels, length = x.size()
85
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
86
+ return x + signal.to(dtype=x.dtype, device=x.device)
87
 
88
 
89
  def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
90
+ b, channels, length = x.size()
91
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
92
+ return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
93
 
94
 
95
  def subsequent_mask(length):
96
+ mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
97
+ return mask
98
 
99
 
100
  @torch.jit.script
101
  def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
102
+ n_channels_int = n_channels[0]
103
+ in_act = input_a + input_b
104
+ t_act = torch.tanh(in_act[:, :n_channels_int, :])
105
+ s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
106
+ acts = t_act * s_act
107
+ return acts
108
 
109
 
110
  def convert_pad_shape(pad_shape):
111
+ l = pad_shape[::-1]
112
+ pad_shape = [item for sublist in l for item in sublist]
113
+ return pad_shape
114
 
115
 
116
  def shift_1d(x):
117
+ x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
118
+ return x
119
 
120
 
121
  def sequence_mask(length, max_length=None):
122
+ if max_length is None:
123
+ max_length = length.max()
124
+ x = torch.arange(max_length, dtype=length.dtype, device=length.device)
125
+ return x.unsqueeze(0) < length.unsqueeze(1)
126
 
127
 
128
  def generate_path(duration, mask):
129
+ """
130
+ duration: [b, 1, t_x]
131
+ mask: [b, 1, t_y, t_x]
132
+ """
133
+ device = duration.device
134
+
135
+ b, _, t_y, t_x = mask.shape
136
+ cum_duration = torch.cumsum(duration, -1)
137
+
138
+ cum_duration_flat = cum_duration.view(b * t_x)
139
+ path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
140
+ path = path.view(b, t_x, t_y)
141
+ path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
142
+ path = path.unsqueeze(1).transpose(2,3) * mask
143
+ return path
144
 
145
 
146
  def clip_grad_value_(parameters, clip_value, norm_type=2):
147
+ if isinstance(parameters, torch.Tensor):
148
+ parameters = [parameters]
149
+ parameters = list(filter(lambda p: p.grad is not None, parameters))
150
+ norm_type = float(norm_type)
151
+ if clip_value is not None:
152
+ clip_value = float(clip_value)
153
+
154
+ total_norm = 0
155
+ for p in parameters:
156
+ param_norm = p.grad.data.norm(norm_type)
157
+ total_norm += param_norm.item() ** norm_type
158
  if clip_value is not None:
159
+ p.grad.data.clamp_(min=-clip_value, max=clip_value)
160
+ total_norm = total_norm ** (1. / norm_type)
161
+ return total_norm
 
 
 
 
 
 
 
configs/nyarumul.json CHANGED
@@ -5,10 +5,7 @@
5
  "seed": 1234,
6
  "epochs": 10000,
7
  "learning_rate": 2e-4,
8
- "betas": [
9
- 0.8,
10
- 0.99
11
- ],
12
  "eps": 1e-9,
13
  "batch_size": 16,
14
  "fp16_run": true,
@@ -20,11 +17,9 @@
20
  "c_kl": 1.0
21
  },
22
  "data": {
23
- "training_files": "/root/sovits/filelist/train.txt",
24
- "validation_files": "/root/sovits/filelist/val.txt",
25
- "text_cleaners": [
26
- "english_cleaners2"
27
- ],
28
  "max_wav_value": 32768.0,
29
  "sampling_rate": 22050,
30
  "filter_length": 1024,
@@ -34,7 +29,7 @@
34
  "mel_fmin": 0.0,
35
  "mel_fmax": null,
36
  "add_blank": true,
37
- "n_speakers": 8,
38
  "cleaned_text": true
39
  },
40
  "model": {
@@ -46,51 +41,13 @@
46
  "kernel_size": 3,
47
  "p_dropout": 0.1,
48
  "resblock": "1",
49
- "resblock_kernel_sizes": [
50
- 3,
51
- 7,
52
- 11
53
- ],
54
- "resblock_dilation_sizes": [
55
- [
56
- 1,
57
- 3,
58
- 5
59
- ],
60
- [
61
- 1,
62
- 3,
63
- 5
64
- ],
65
- [
66
- 1,
67
- 3,
68
- 5
69
- ]
70
- ],
71
- "upsample_rates": [
72
- 8,
73
- 8,
74
- 2,
75
- 2
76
- ],
77
  "upsample_initial_channel": 512,
78
- "upsample_kernel_sizes": [
79
- 16,
80
- 16,
81
- 4,
82
- 4
83
- ],
84
  "n_layers_q": 3,
85
  "use_spectral_norm": false,
86
  "gin_channels": 256
87
- },
88
- "speakers": [
89
- "nyaru",
90
- "taffy",
91
- "yunhao",
92
- "jishuang",
93
- "yilanqiu",
94
- "opencpop"
95
- ]
96
  }
 
5
  "seed": 1234,
6
  "epochs": 10000,
7
  "learning_rate": 2e-4,
8
+ "betas": [0.8, 0.99],
 
 
 
9
  "eps": 1e-9,
10
  "batch_size": 16,
11
  "fp16_run": true,
 
17
  "c_kl": 1.0
18
  },
19
  "data": {
20
+ "training_files":"/content/drive/MyDrive/SingingVC/trainmul.txt",
21
+ "validation_files":"/content/drive/MyDrive/SingingVC/valmul.txt",
22
+ "text_cleaners":["english_cleaners2"],
 
 
23
  "max_wav_value": 32768.0,
24
  "sampling_rate": 22050,
25
  "filter_length": 1024,
 
29
  "mel_fmin": 0.0,
30
  "mel_fmax": null,
31
  "add_blank": true,
32
+ "n_speakers": 3,
33
  "cleaned_text": true
34
  },
35
  "model": {
 
41
  "kernel_size": 3,
42
  "p_dropout": 0.1,
43
  "resblock": "1",
44
+ "resblock_kernel_sizes": [3,7,11],
45
+ "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
46
+ "upsample_rates": [8,8,2,2],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
  "upsample_initial_channel": 512,
48
+ "upsample_kernel_sizes": [16,16,4,4],
 
 
 
 
 
49
  "n_layers_q": 3,
50
  "use_spectral_norm": false,
51
  "gin_channels": 256
52
+ }
 
 
 
 
 
 
 
 
53
  }
configs/{yilanqiu.json → nyarusing.json} RENAMED
@@ -3,14 +3,11 @@
3
  "log_interval": 200,
4
  "eval_interval": 2000,
5
  "seed": 1234,
6
- "epochs": 10000,
7
  "learning_rate": 2e-4,
8
- "betas": [
9
- 0.8,
10
- 0.99
11
- ],
12
  "eps": 1e-9,
13
- "batch_size": 16,
14
  "fp16_run": true,
15
  "lr_decay": 0.999875,
16
  "segment_size": 8192,
@@ -20,11 +17,9 @@
20
  "c_kl": 1.0
21
  },
22
  "data": {
23
- "training_files": "/root/content/qiu/train.txt",
24
- "validation_files": "/root/content/qiu/val.txt",
25
- "text_cleaners": [
26
- "english_cleaners2"
27
- ],
28
  "max_wav_value": 32768.0,
29
  "sampling_rate": 22050,
30
  "filter_length": 1024,
@@ -34,7 +29,7 @@
34
  "mel_fmin": 0.0,
35
  "mel_fmax": null,
36
  "add_blank": true,
37
- "n_speakers": 3,
38
  "cleaned_text": true
39
  },
40
  "model": {
@@ -46,48 +41,12 @@
46
  "kernel_size": 3,
47
  "p_dropout": 0.1,
48
  "resblock": "1",
49
- "resblock_kernel_sizes": [
50
- 3,
51
- 7,
52
- 11
53
- ],
54
- "resblock_dilation_sizes": [
55
- [
56
- 1,
57
- 3,
58
- 5
59
- ],
60
- [
61
- 1,
62
- 3,
63
- 5
64
- ],
65
- [
66
- 1,
67
- 3,
68
- 5
69
- ]
70
- ],
71
- "upsample_rates": [
72
- 8,
73
- 8,
74
- 2,
75
- 2
76
- ],
77
  "upsample_initial_channel": 512,
78
- "upsample_kernel_sizes": [
79
- 16,
80
- 16,
81
- 4,
82
- 4
83
- ],
84
  "n_layers_q": 3,
85
- "use_spectral_norm": false,
86
- "gin_channels": 256
87
- },
88
- "speakers": [
89
- "maolei",
90
- "x",
91
- "yilanqiu"
92
- ]
93
  }
 
3
  "log_interval": 200,
4
  "eval_interval": 2000,
5
  "seed": 1234,
6
+ "epochs": 20000,
7
  "learning_rate": 2e-4,
8
+ "betas": [0.8, 0.99],
 
 
 
9
  "eps": 1e-9,
10
+ "batch_size": 24,
11
  "fp16_run": true,
12
  "lr_decay": 0.999875,
13
  "segment_size": 8192,
 
17
  "c_kl": 1.0
18
  },
19
  "data": {
20
+ "training_files":"/content/train.txt",
21
+ "validation_files":"/content/nyarusing/val.txt",
22
+ "text_cleaners":["english_cleaners2"],
 
 
23
  "max_wav_value": 32768.0,
24
  "sampling_rate": 22050,
25
  "filter_length": 1024,
 
29
  "mel_fmin": 0.0,
30
  "mel_fmax": null,
31
  "add_blank": true,
32
+ "n_speakers": 0,
33
  "cleaned_text": true
34
  },
35
  "model": {
 
41
  "kernel_size": 3,
42
  "p_dropout": 0.1,
43
  "resblock": "1",
44
+ "resblock_kernel_sizes": [3,7,11],
45
+ "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
46
+ "upsample_rates": [8,8,2,2],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
  "upsample_initial_channel": 512,
48
+ "upsample_kernel_sizes": [16,16,4,4],
 
 
 
 
 
49
  "n_layers_q": 3,
50
+ "use_spectral_norm": false
51
+ }
 
 
 
 
 
 
52
  }
configs/sovits_pre.json DELETED
@@ -1,94 +0,0 @@
1
- {
2
- "train": {
3
- "log_interval": 200,
4
- "eval_interval": 2000,
5
- "seed": 1234,
6
- "epochs": 10000,
7
- "learning_rate": 2e-4,
8
- "betas": [
9
- 0.8,
10
- 0.99
11
- ],
12
- "eps": 1e-9,
13
- "batch_size": 16,
14
- "fp16_run": true,
15
- "lr_decay": 0.999875,
16
- "segment_size": 16384,
17
- "init_lr_ratio": 1,
18
- "warmup_epochs": 0,
19
- "c_mel": 45,
20
- "c_kl": 1.0
21
- },
22
- "data": {
23
- "training_files": "/root/sovits/filelist/train.txt",
24
- "validation_files": "/root/sovits/filelist/val.txt",
25
- "text_cleaners": [
26
- "english_cleaners2"
27
- ],
28
- "max_wav_value": 32768.0,
29
- "sampling_rate": 44100,
30
- "filter_length": 2048,
31
- "hop_length": 512,
32
- "win_length": 2048,
33
- "n_mel_channels": 128,
34
- "mel_fmin": 0.0,
35
- "mel_fmax": null,
36
- "add_blank": true,
37
- "n_speakers": 4,
38
- "cleaned_text": true
39
- },
40
- "model": {
41
- "inter_channels": 192,
42
- "hidden_channels": 256,
43
- "filter_channels": 768,
44
- "n_heads": 2,
45
- "n_layers": 6,
46
- "kernel_size": 3,
47
- "p_dropout": 0.1,
48
- "resblock": "1",
49
- "resblock_kernel_sizes": [
50
- 3,
51
- 7,
52
- 11
53
- ],
54
- "resblock_dilation_sizes": [
55
- [
56
- 1,
57
- 3,
58
- 5
59
- ],
60
- [
61
- 1,
62
- 3,
63
- 5
64
- ],
65
- [
66
- 1,
67
- 3,
68
- 5
69
- ]
70
- ],
71
- "upsample_rates": [
72
- 8,
73
- 8,
74
- 4,
75
- 2
76
- ],
77
- "upsample_initial_channel": 512,
78
- "upsample_kernel_sizes": [
79
- 16,
80
- 16,
81
- 4,
82
- 4
83
- ],
84
- "n_layers_q": 3,
85
- "use_spectral_norm": false,
86
- "gin_channels": 256
87
- },
88
- "speakers": [
89
- "yilanqiu",
90
- "opencpop",
91
- "yunhao",
92
- "jishuang"
93
- ]
94
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
data_utils.py CHANGED
@@ -1,12 +1,14 @@
 
1
  import os
2
  import random
3
-
4
  import numpy as np
5
  import torch
6
  import torch.utils.data
 
 
7
  from mel_processing import spectrogram_torch
8
-
9
  from utils import load_wav_to_torch, load_filepaths_and_text
 
10
 
11
 
12
  def dropout1d(myarray, ratio=0.5):
@@ -57,11 +59,11 @@ class TextAudioLoader(torch.utils.data.Dataset):
57
 
58
  def get_audio_text_pair(self, audiopath_and_text):
59
  # separate filename and text
60
- audiopath, text, pitch = audiopath_and_text[0], audiopath_and_text[1], audiopath_and_text[2]
61
  text = self.get_text(text)
62
  spec, wav = self.get_audio(audiopath)
63
  pitch = self.get_pitch(pitch)
64
- return text, spec, wav, pitch
65
 
66
  def get_pitch(self, pitch):
67
 
@@ -97,7 +99,7 @@ class TextAudioLoader(torch.utils.data.Dataset):
97
  return len(self.audiopaths_and_text)
98
 
99
 
100
- class TextAudioCollate:
101
  """ Zero-pads model inputs and targets
102
  """
103
 
@@ -121,6 +123,7 @@ class TextAudioCollate:
121
  max_pitch_len = max([x[3].shape[0] for x in batch])
122
  # print(batch)
123
 
 
124
  text_lengths = torch.LongTensor(len(batch))
125
  spec_lengths = torch.LongTensor(len(batch))
126
  wav_lengths = torch.LongTensor(len(batch))
@@ -202,14 +205,13 @@ class TextAudioSpeakerLoader(torch.utils.data.Dataset):
202
 
203
  def get_audio_text_speaker_pair(self, audiopath_sid_text):
204
  # separate filename, speaker_id and text
205
- audiopath, sid, text, pitch = audiopath_sid_text[0], audiopath_sid_text[1], audiopath_sid_text[2], \
206
- audiopath_sid_text[3]
207
  text = self.get_text(text)
208
  spec, wav = self.get_audio(audiopath)
209
  sid = self.get_sid(sid)
210
  pitch = self.get_pitch(pitch)
211
 
212
- return text, spec, wav, pitch, sid
213
 
214
  def get_audio(self, filename):
215
  audio, sampling_rate = load_wav_to_torch(filename)
@@ -233,7 +235,7 @@ class TextAudioSpeakerLoader(torch.utils.data.Dataset):
233
  soft = np.load(text)
234
  text_norm = torch.FloatTensor(soft)
235
  return text_norm
236
-
237
  def get_pitch(self, pitch):
238
  return torch.LongTensor(np.load(pitch))
239
 
@@ -248,7 +250,7 @@ class TextAudioSpeakerLoader(torch.utils.data.Dataset):
248
  return len(self.audiopaths_sid_text)
249
 
250
 
251
- class TextAudioSpeakerCollate:
252
  """ Zero-pads model inputs and targets
253
  """
254
 
@@ -308,7 +310,7 @@ class TextAudioSpeakerCollate:
308
 
309
  if self.return_ids:
310
  return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, pitch_padded, sid, ids_sorted_decreasing
311
- return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, pitch_padded, sid
312
 
313
 
314
  class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
@@ -398,7 +400,7 @@ class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
398
 
399
  if hi > lo:
400
  mid = (hi + lo) // 2
401
- if self.boundaries[mid] < x <= self.boundaries[mid + 1]:
402
  return mid
403
  elif x <= self.boundaries[mid]:
404
  return self._bisect(x, lo, mid)
 
1
+ import time
2
  import os
3
  import random
 
4
  import numpy as np
5
  import torch
6
  import torch.utils.data
7
+ import numpy as np
8
+ import commons
9
  from mel_processing import spectrogram_torch
 
10
  from utils import load_wav_to_torch, load_filepaths_and_text
11
+ from text import text_to_sequence, cleaned_text_to_sequence
12
 
13
 
14
  def dropout1d(myarray, ratio=0.5):
 
59
 
60
  def get_audio_text_pair(self, audiopath_and_text):
61
  # separate filename and text
62
+ audiopath, text, pitch = audiopath_and_text[0], audiopath_and_text[1],audiopath_and_text[2]
63
  text = self.get_text(text)
64
  spec, wav = self.get_audio(audiopath)
65
  pitch = self.get_pitch(pitch)
66
+ return (text, spec, wav, pitch)
67
 
68
  def get_pitch(self, pitch):
69
 
 
99
  return len(self.audiopaths_and_text)
100
 
101
 
102
+ class TextAudioCollate():
103
  """ Zero-pads model inputs and targets
104
  """
105
 
 
123
  max_pitch_len = max([x[3].shape[0] for x in batch])
124
  # print(batch)
125
 
126
+
127
  text_lengths = torch.LongTensor(len(batch))
128
  spec_lengths = torch.LongTensor(len(batch))
129
  wav_lengths = torch.LongTensor(len(batch))
 
205
 
206
  def get_audio_text_speaker_pair(self, audiopath_sid_text):
207
  # separate filename, speaker_id and text
208
+ audiopath, sid, text, pitch = audiopath_sid_text[0], audiopath_sid_text[1], audiopath_sid_text[2], audiopath_sid_text[3]
 
209
  text = self.get_text(text)
210
  spec, wav = self.get_audio(audiopath)
211
  sid = self.get_sid(sid)
212
  pitch = self.get_pitch(pitch)
213
 
214
+ return (text, spec, wav, pitch, sid)
215
 
216
  def get_audio(self, filename):
217
  audio, sampling_rate = load_wav_to_torch(filename)
 
235
  soft = np.load(text)
236
  text_norm = torch.FloatTensor(soft)
237
  return text_norm
238
+
239
  def get_pitch(self, pitch):
240
  return torch.LongTensor(np.load(pitch))
241
 
 
250
  return len(self.audiopaths_sid_text)
251
 
252
 
253
+ class TextAudioSpeakerCollate():
254
  """ Zero-pads model inputs and targets
255
  """
256
 
 
310
 
311
  if self.return_ids:
312
  return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, pitch_padded, sid, ids_sorted_decreasing
313
+ return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths,pitch_padded , sid
314
 
315
 
316
  class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
 
400
 
401
  if hi > lo:
402
  mid = (hi + lo) // 2
403
+ if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]:
404
  return mid
405
  elif x <= self.boundaries[mid]:
406
  return self._bisect(x, lo, mid)
hubert.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:e82e7d079df05fe3aa535f6f7d42d309bdae1d2a53324e2b2386c56721f4f649
3
- size 378435957
 
 
 
 
hubert_model.py DELETED
@@ -1,223 +0,0 @@
1
- import copy
2
- import random
3
- from typing import Optional, Tuple
4
-
5
- import torch
6
- import torch.nn as nn
7
- import torch.nn.functional as t_func
8
- from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present
9
-
10
-
11
- class Hubert(nn.Module):
12
- def __init__(self, num_label_embeddings: int = 100, mask: bool = True):
13
- super().__init__()
14
- self._mask = mask
15
- self.feature_extractor = FeatureExtractor()
16
- self.feature_projection = FeatureProjection()
17
- self.positional_embedding = PositionalConvEmbedding()
18
- self.norm = nn.LayerNorm(768)
19
- self.dropout = nn.Dropout(0.1)
20
- self.encoder = TransformerEncoder(
21
- nn.TransformerEncoderLayer(
22
- 768, 12, 3072, activation="gelu", batch_first=True
23
- ),
24
- 12,
25
- )
26
- self.proj = nn.Linear(768, 256)
27
-
28
- self.masked_spec_embed = nn.Parameter(torch.FloatTensor(768).uniform_())
29
- self.label_embedding = nn.Embedding(num_label_embeddings, 256)
30
-
31
- def mask(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
32
- mask = None
33
- if self.training and self._mask:
34
- mask = _compute_mask((x.size(0), x.size(1)), 0.8, 10, x.device, 2)
35
- x[mask] = self.masked_spec_embed.to(x.dtype)
36
- return x, mask
37
-
38
- def encode(
39
- self, x: torch.Tensor, layer: Optional[int] = None
40
- ) -> Tuple[torch.Tensor, torch.Tensor]:
41
- x = self.feature_extractor(x)
42
- x = self.feature_projection(x.transpose(1, 2))
43
- x, mask = self.mask(x)
44
- x = x + self.positional_embedding(x)
45
- x = self.dropout(self.norm(x))
46
- x = self.encoder(x, output_layer=layer)
47
- return x, mask
48
-
49
- def logits(self, x: torch.Tensor) -> torch.Tensor:
50
- logits = torch.cosine_similarity(
51
- x.unsqueeze(2),
52
- self.label_embedding.weight.unsqueeze(0).unsqueeze(0),
53
- dim=-1,
54
- )
55
- return logits / 0.1
56
-
57
- def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
58
- x, mask = self.encode(x)
59
- x = self.proj(x)
60
- logits = self.logits(x)
61
- return logits, mask
62
-
63
-
64
- class HubertSoft(Hubert):
65
- def __init__(self):
66
- super().__init__()
67
-
68
- @torch.inference_mode()
69
- def units(self, wav: torch.Tensor) -> torch.Tensor:
70
- wav = t_func.pad(wav, ((400 - 320) // 2, (400 - 320) // 2))
71
- x, _ = self.encode(wav)
72
- return self.proj(x)
73
-
74
-
75
- class FeatureExtractor(nn.Module):
76
- def __init__(self):
77
- super().__init__()
78
- self.conv0 = nn.Conv1d(1, 512, 10, 5, bias=False)
79
- self.norm0 = nn.GroupNorm(512, 512)
80
- self.conv1 = nn.Conv1d(512, 512, 3, 2, bias=False)
81
- self.conv2 = nn.Conv1d(512, 512, 3, 2, bias=False)
82
- self.conv3 = nn.Conv1d(512, 512, 3, 2, bias=False)
83
- self.conv4 = nn.Conv1d(512, 512, 3, 2, bias=False)
84
- self.conv5 = nn.Conv1d(512, 512, 2, 2, bias=False)
85
- self.conv6 = nn.Conv1d(512, 512, 2, 2, bias=False)
86
-
87
- def forward(self, x: torch.Tensor) -> torch.Tensor:
88
- x = t_func.gelu(self.norm0(self.conv0(x)))
89
- x = t_func.gelu(self.conv1(x))
90
- x = t_func.gelu(self.conv2(x))
91
- x = t_func.gelu(self.conv3(x))
92
- x = t_func.gelu(self.conv4(x))
93
- x = t_func.gelu(self.conv5(x))
94
- x = t_func.gelu(self.conv6(x))
95
- return x
96
-
97
-
98
- class FeatureProjection(nn.Module):
99
- def __init__(self):
100
- super().__init__()
101
- self.norm = nn.LayerNorm(512)
102
- self.projection = nn.Linear(512, 768)
103
- self.dropout = nn.Dropout(0.1)
104
-
105
- def forward(self, x: torch.Tensor) -> torch.Tensor:
106
- x = self.norm(x)
107
- x = self.projection(x)
108
- x = self.dropout(x)
109
- return x
110
-
111
-
112
- class PositionalConvEmbedding(nn.Module):
113
- def __init__(self):
114
- super().__init__()
115
- self.conv = nn.Conv1d(
116
- 768,
117
- 768,
118
- kernel_size=128,
119
- padding=128 // 2,
120
- groups=16,
121
- )
122
- self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2)
123
-
124
- def forward(self, x: torch.Tensor) -> torch.Tensor:
125
- x = self.conv(x.transpose(1, 2))
126
- x = t_func.gelu(x[:, :, :-1])
127
- return x.transpose(1, 2)
128
-
129
-
130
- class TransformerEncoder(nn.Module):
131
- def __init__(
132
- self, encoder_layer: nn.TransformerEncoderLayer, num_layers: int
133
- ) -> None:
134
- super(TransformerEncoder, self).__init__()
135
- self.layers = nn.ModuleList(
136
- [copy.deepcopy(encoder_layer) for _ in range(num_layers)]
137
- )
138
- self.num_layers = num_layers
139
-
140
- def forward(
141
- self,
142
- src: torch.Tensor,
143
- mask: torch.Tensor = None,
144
- src_key_padding_mask: torch.Tensor = None,
145
- output_layer: Optional[int] = None,
146
- ) -> torch.Tensor:
147
- output = src
148
- for layer in self.layers[:output_layer]:
149
- output = layer(
150
- output, src_mask=mask, src_key_padding_mask=src_key_padding_mask
151
- )
152
- return output
153
-
154
-
155
- def _compute_mask(
156
- shape: Tuple[int, int],
157
- mask_prob: float,
158
- mask_length: int,
159
- device: torch.device,
160
- min_masks: int = 0,
161
- ) -> torch.Tensor:
162
- batch_size, sequence_length = shape
163
-
164
- if mask_length < 1:
165
- raise ValueError("`mask_length` has to be bigger than 0.")
166
-
167
- if mask_length > sequence_length:
168
- raise ValueError(
169
- f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length} and `sequence_length`: {sequence_length}`"
170
- )
171
-
172
- # compute number of masked spans in batch
173
- num_masked_spans = int(mask_prob * sequence_length / mask_length + random.random())
174
- num_masked_spans = max(num_masked_spans, min_masks)
175
-
176
- # make sure num masked indices <= sequence_length
177
- if num_masked_spans * mask_length > sequence_length:
178
- num_masked_spans = sequence_length // mask_length
179
-
180
- # SpecAugment mask to fill
181
- mask = torch.zeros((batch_size, sequence_length), device=device, dtype=torch.bool)
182
-
183
- # uniform distribution to sample from, make sure that offset samples are < sequence_length
184
- uniform_dist = torch.ones(
185
- (batch_size, sequence_length - (mask_length - 1)), device=device
186
- )
187
-
188
- # get random indices to mask
189
- mask_indices = torch.multinomial(uniform_dist, num_masked_spans)
190
-
191
- # expand masked indices to masked spans
192
- mask_indices = (
193
- mask_indices.unsqueeze(dim=-1)
194
- .expand((batch_size, num_masked_spans, mask_length))
195
- .reshape(batch_size, num_masked_spans * mask_length)
196
- )
197
- offsets = (
198
- torch.arange(mask_length, device=device)[None, None, :]
199
- .expand((batch_size, num_masked_spans, mask_length))
200
- .reshape(batch_size, num_masked_spans * mask_length)
201
- )
202
- mask_idxs = mask_indices + offsets
203
-
204
- # scatter indices to mask
205
- mask = mask.scatter(1, mask_idxs, True)
206
-
207
- return mask
208
-
209
-
210
- def hubert_soft(
211
- path: str
212
- ) -> HubertSoft:
213
- r"""HuBERT-Soft from `"A Comparison of Discrete and Soft Speech Units for Improved Voice Conversion"`.
214
- Args:
215
- path (str): path of a pretrained model
216
- """
217
- dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
218
- hubert = HubertSoft()
219
- checkpoint = torch.load(path)
220
- consume_prefix_in_state_dict_if_present(checkpoint, "module.")
221
- hubert.load_state_dict(checkpoint)
222
- hubert.eval().to(dev)
223
- return hubert
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
infer_tool.py DELETED
@@ -1,170 +0,0 @@
1
- import os
2
- import time
3
-
4
- import matplotlib.pyplot as plt
5
- import numpy as np
6
- import soundfile
7
- import torch
8
- import torchaudio
9
-
10
- import hubert_model
11
- import utils
12
- from models import SynthesizerTrn
13
- from preprocess_wave import FeatureInput
14
-
15
- dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
16
-
17
-
18
- def timeit(func):
19
- def run(*args, **kwargs):
20
- t = time.time()
21
- res = func(*args, **kwargs)
22
- print('executing \'%s\' costed %.3fs' % (func.__name__, time.time() - t))
23
- return res
24
-
25
- return run
26
-
27
-
28
- def get_end_file(dir_path, end):
29
- file_lists = []
30
- for root, dirs, files in os.walk(dir_path):
31
- files = [f for f in files if f[0] != '.']
32
- dirs[:] = [d for d in dirs if d[0] != '.']
33
- for f_file in files:
34
- if f_file.endswith(end):
35
- file_lists.append(os.path.join(root, f_file).replace("\\", "/"))
36
- return file_lists
37
-
38
-
39
- def load_model(model_path, config_path):
40
- # 获取模型配置
41
- hps_ms = utils.get_hparams_from_file(config_path)
42
- n_g_ms = SynthesizerTrn(
43
- 178,
44
- hps_ms.data.filter_length // 2 + 1,
45
- hps_ms.train.segment_size // hps_ms.data.hop_length,
46
- n_speakers=hps_ms.data.n_speakers,
47
- **hps_ms.model)
48
- _ = utils.load_checkpoint(model_path, n_g_ms, None)
49
- _ = n_g_ms.eval().to(dev)
50
- # 加载hubert
51
- hubert_soft = hubert_model.hubert_soft(get_end_file("./", "pt")[0])
52
- feature_input = FeatureInput(hps_ms.data.sampling_rate, hps_ms.data.hop_length)
53
- return n_g_ms, hubert_soft, feature_input, hps_ms
54
-
55
-
56
- def resize2d_f0(x, target_len):
57
- source = np.array(x)
58
- source[source < 0.001] = np.nan
59
- target = np.interp(np.arange(0, len(source) * target_len, len(source)) / target_len, np.arange(0, len(source)),
60
- source)
61
- res = np.nan_to_num(target)
62
- return res
63
-
64
-
65
- def get_units(audio, sr, hubert_soft):
66
- source = torchaudio.functional.resample(audio, sr, 16000)
67
- source = source.unsqueeze(0).to(dev)
68
- with torch.inference_mode():
69
- units = hubert_soft.units(source)
70
- return units
71
-
72
-
73
- def transcribe(source_path, length, transform, feature_input):
74
- feature_pit = feature_input.compute_f0(source_path)
75
- feature_pit = feature_pit * 2 ** (transform / 12)
76
- feature_pit = resize2d_f0(feature_pit, length)
77
- coarse_pit = feature_input.coarse_f0(feature_pit)
78
- return coarse_pit
79
-
80
-
81
- def get_unit_pitch(in_path, tran, hubert_soft, feature_input):
82
- audio, sample_rate = torchaudio.load(in_path)
83
- soft = get_units(audio, sample_rate, hubert_soft).squeeze(0).cpu().numpy()
84
- input_pitch = transcribe(in_path, soft.shape[0], tran, feature_input)
85
- return soft, input_pitch
86
-
87
-
88
- def clean_pitch(input_pitch):
89
- num_nan = np.sum(input_pitch == 1)
90
- if num_nan / len(input_pitch) > 0.9:
91
- input_pitch[input_pitch != 1] = 1
92
- return input_pitch
93
-
94
-
95
- def plt_pitch(input_pitch):
96
- input_pitch = input_pitch.astype(float)
97
- input_pitch[input_pitch == 1] = np.nan
98
- return input_pitch
99
-
100
-
101
- def f0_to_pitch(ff):
102
- f0_pitch = 69 + 12 * np.log2(ff / 440)
103
- return f0_pitch
104
-
105
-
106
- def f0_plt(in_path, out_path, tran, hubert_soft, feature_input):
107
- s1, input_pitch = get_unit_pitch(in_path, tran, hubert_soft, feature_input)
108
- s2, output_pitch = get_unit_pitch(out_path, 0, hubert_soft, feature_input)
109
- plt.clf()
110
- plt.plot(plt_pitch(input_pitch), color="#66ccff")
111
- plt.plot(plt_pitch(output_pitch), color="orange")
112
- plt.savefig("temp.jpg")
113
-
114
-
115
- def calc_error(in_path, out_path, tran, feature_input):
116
- input_pitch = feature_input.compute_f0(in_path)
117
- output_pitch = feature_input.compute_f0(out_path)
118
- sum_y = []
119
- if np.sum(input_pitch == 0) / len(input_pitch) > 0.9:
120
- mistake, var_take = 0, 0
121
- else:
122
- for i in range(min(len(input_pitch), len(output_pitch))):
123
- if input_pitch[i] > 0 and output_pitch[i] > 0:
124
- sum_y.append(abs(f0_to_pitch(output_pitch[i]) - (f0_to_pitch(input_pitch[i]) + tran)))
125
- num_y = 0
126
- for x in sum_y:
127
- num_y += x
128
- len_y = len(sum_y) if len(sum_y) else 1
129
- mistake = round(float(num_y / len_y), 2)
130
- var_take = round(float(np.std(sum_y, ddof=1)), 2)
131
- return mistake, var_take
132
-
133
-
134
- def infer(source_path, speaker_id, tran, net_g_ms, hubert_soft, feature_input):
135
- sid = torch.LongTensor([int(speaker_id)]).to(dev)
136
- soft, pitch = get_unit_pitch(source_path, tran, hubert_soft, feature_input)
137
- pitch = torch.LongTensor(clean_pitch(pitch)).unsqueeze(0).to(dev)
138
- stn_tst = torch.FloatTensor(soft)
139
- with torch.no_grad():
140
- x_tst = stn_tst.unsqueeze(0).to(dev)
141
- x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(dev)
142
- audio = \
143
- net_g_ms.infer(x_tst, x_tst_lengths, pitch, sid=sid, noise_scale=0.3, noise_scale_w=0.5,
144
- length_scale=1)[0][
145
- 0, 0].data.float().cpu().numpy()
146
- return audio, audio.shape[-1]
147
-
148
-
149
- def del_temp_wav(path_data):
150
- for i in get_end_file(path_data, "wav"): # os.listdir(path_data)#返回一个列表,里面是当前目录下面的所有东西的相对路径
151
- os.remove(i)
152
-
153
-
154
- def format_wav(audio_path, tar_sample):
155
- raw_audio, raw_sample_rate = torchaudio.load(audio_path)
156
- tar_audio = torchaudio.transforms.Resample(orig_freq=raw_sample_rate, new_freq=tar_sample)(raw_audio)[0]
157
- soundfile.write(audio_path[:-4] + ".wav", tar_audio, tar_sample)
158
- return tar_audio, tar_sample
159
-
160
-
161
- def fill_a_to_b(a, b):
162
- if len(a) < len(b):
163
- for _ in range(0, len(b) - len(a)):
164
- a.append(a[0])
165
-
166
-
167
- def mkdir(paths: list):
168
- for path in paths:
169
- if not os.path.exists(path):
170
- os.mkdir(path)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
losses.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.nn import functional as F
3
+
4
+ import commons
5
+
6
+
7
+ def feature_loss(fmap_r, fmap_g):
8
+ loss = 0
9
+ for dr, dg in zip(fmap_r, fmap_g):
10
+ for rl, gl in zip(dr, dg):
11
+ rl = rl.float().detach()
12
+ gl = gl.float()
13
+ loss += torch.mean(torch.abs(rl - gl))
14
+
15
+ return loss * 2
16
+
17
+
18
+ def discriminator_loss(disc_real_outputs, disc_generated_outputs):
19
+ loss = 0
20
+ r_losses = []
21
+ g_losses = []
22
+ for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
23
+ dr = dr.float()
24
+ dg = dg.float()
25
+ r_loss = torch.mean((1-dr)**2)
26
+ g_loss = torch.mean(dg**2)
27
+ loss += (r_loss + g_loss)
28
+ r_losses.append(r_loss.item())
29
+ g_losses.append(g_loss.item())
30
+
31
+ return loss, r_losses, g_losses
32
+
33
+
34
+ def generator_loss(disc_outputs):
35
+ loss = 0
36
+ gen_losses = []
37
+ for dg in disc_outputs:
38
+ dg = dg.float()
39
+ l = torch.mean((1-dg)**2)
40
+ gen_losses.append(l)
41
+ loss += l
42
+
43
+ return loss, gen_losses
44
+
45
+
46
+ def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
47
+ """
48
+ z_p, logs_q: [b, h, t_t]
49
+ m_p, logs_p: [b, h, t_t]
50
+ """
51
+ z_p = z_p.float()
52
+ logs_q = logs_q.float()
53
+ m_p = m_p.float()
54
+ logs_p = logs_p.float()
55
+ z_mask = z_mask.float()
56
+
57
+ kl = logs_p - logs_q - 0.5
58
+ kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p)
59
+ kl = torch.sum(kl * z_mask)
60
+ l = kl / torch.sum(z_mask)
61
+ return l
mel_processing.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import os
3
+ import random
4
+ import torch
5
+ from torch import nn
6
+ import torch.nn.functional as F
7
+ import torch.utils.data
8
+ import numpy as np
9
+ import librosa
10
+ import librosa.util as librosa_util
11
+ from librosa.util import normalize, pad_center, tiny
12
+ from scipy.signal import get_window
13
+ from scipy.io.wavfile import read
14
+ from librosa.filters import mel as librosa_mel_fn
15
+
16
+ MAX_WAV_VALUE = 32768.0
17
+
18
+
19
+ def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
20
+ """
21
+ PARAMS
22
+ ------
23
+ C: compression factor
24
+ """
25
+ return torch.log(torch.clamp(x, min=clip_val) * C)
26
+
27
+
28
+ def dynamic_range_decompression_torch(x, C=1):
29
+ """
30
+ PARAMS
31
+ ------
32
+ C: compression factor used to compress
33
+ """
34
+ return torch.exp(x) / C
35
+
36
+
37
+ def spectral_normalize_torch(magnitudes):
38
+ output = dynamic_range_compression_torch(magnitudes)
39
+ return output
40
+
41
+
42
+ def spectral_de_normalize_torch(magnitudes):
43
+ output = dynamic_range_decompression_torch(magnitudes)
44
+ return output
45
+
46
+
47
+ mel_basis = {}
48
+ hann_window = {}
49
+
50
+
51
+ def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
52
+ if torch.min(y) < -1.:
53
+ print('min value is ', torch.min(y))
54
+ if torch.max(y) > 1.:
55
+ print('max value is ', torch.max(y))
56
+
57
+ global hann_window
58
+ dtype_device = str(y.dtype) + '_' + str(y.device)
59
+ wnsize_dtype_device = str(win_size) + '_' + dtype_device
60
+ if wnsize_dtype_device not in hann_window:
61
+ hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
62
+
63
+ y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
64
+ y = y.squeeze(1)
65
+
66
+ spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
67
+ center=center, pad_mode='reflect', normalized=False, onesided=True)
68
+
69
+ spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
70
+ return spec
71
+
72
+
73
+ def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
74
+ global mel_basis
75
+ dtype_device = str(spec.dtype) + '_' + str(spec.device)
76
+ fmax_dtype_device = str(fmax) + '_' + dtype_device
77
+ if fmax_dtype_device not in mel_basis:
78
+ mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
79
+ mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device)
80
+ spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
81
+ spec = spectral_normalize_torch(spec)
82
+ return spec
83
+
84
+
85
+ def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
86
+ if torch.min(y) < -1.:
87
+ print('min value is ', torch.min(y))
88
+ if torch.max(y) > 1.:
89
+ print('max value is ', torch.max(y))
90
+
91
+ global mel_basis, hann_window
92
+ dtype_device = str(y.dtype) + '_' + str(y.device)
93
+ fmax_dtype_device = str(fmax) + '_' + dtype_device
94
+ wnsize_dtype_device = str(win_size) + '_' + dtype_device
95
+ if fmax_dtype_device not in mel_basis:
96
+ mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
97
+ mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device)
98
+ if wnsize_dtype_device not in hann_window:
99
+ hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
100
+
101
+ y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
102
+ y = y.squeeze(1)
103
+
104
+ spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
105
+ center=center, pad_mode='reflect', normalized=False, onesided=True)
106
+
107
+ spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
108
+
109
+ spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
110
+ spec = spectral_normalize_torch(spec)
111
+
112
+ return spec
models.py CHANGED
@@ -1,15 +1,16 @@
 
1
  import math
2
- import math
3
-
4
  import torch
5
  from torch import nn
6
- from torch.nn import Conv1d, ConvTranspose1d, Conv2d
7
  from torch.nn import functional as F
8
- from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
9
-
10
- import attentions
11
  import commons
12
  import modules
 
 
 
 
 
13
  from commons import init_weights, get_padding
14
 
15
 
@@ -491,8 +492,8 @@ class SynthesizerTrn(nn.Module):
491
  self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16,
492
  gin_channels=gin_channels)
493
  self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
494
- # self.pitch_net = PitchPredictor(n_vocab, inter_channels, hidden_channels, filter_channels, n_heads, n_layers,
495
- # kernel_size, p_dropout)
496
 
497
  if use_sdp:
498
  self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
@@ -502,8 +503,75 @@ class SynthesizerTrn(nn.Module):
502
  if n_speakers > 1:
503
  self.emb_g = nn.Embedding(n_speakers, gin_channels)
504
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
505
  def infer(self, x, x_lengths, pitch, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None):
506
  x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, pitch)
 
 
507
  if self.n_speakers > 0:
508
  g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
509
  else:
@@ -554,3 +622,4 @@ class SynthesizerTrn(nn.Module):
554
  z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
555
  o_hat = self.dec(z_hat * y_mask, g=g_tgt)
556
  return o_hat, y_mask, (z, z_p, z_hat)
 
 
1
+ import copy
2
  import math
 
 
3
  import torch
4
  from torch import nn
 
5
  from torch.nn import functional as F
6
+ import numpy as np
 
 
7
  import commons
8
  import modules
9
+ import attentions
10
+ import monotonic_align
11
+
12
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
13
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
14
  from commons import init_weights, get_padding
15
 
16
 
 
492
  self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16,
493
  gin_channels=gin_channels)
494
  self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
495
+ self.pitch_net = PitchPredictor(n_vocab, inter_channels, hidden_channels, filter_channels, n_heads, n_layers,
496
+ kernel_size, p_dropout)
497
 
498
  if use_sdp:
499
  self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
 
503
  if n_speakers > 1:
504
  self.emb_g = nn.Embedding(n_speakers, gin_channels)
505
 
506
+ def forward(self, x, x_lengths, y, y_lengths, pitch, sid=None):
507
+
508
+ x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, pitch)
509
+ # print(f"x: {x.shape}")
510
+ pred_pitch, pitch_embedding = self.pitch_net(x, x_mask)
511
+ # print(f"pred_pitch: {pred_pitch.shape}")
512
+ # print(f"pitch_embedding: {pitch_embedding.shape}")
513
+ x = x + pitch_embedding
514
+ lf0 = torch.unsqueeze(pred_pitch, -1)
515
+ gt_lf0 = torch.log(440 * (2 ** ((pitch.float() - 69) / 12)))
516
+ gt_lf0 = gt_lf0.to(x.device)
517
+ x_mask_sum = torch.sum(x_mask)
518
+ lf0 = lf0.squeeze()
519
+ l_pitch = torch.sum((gt_lf0 - lf0) ** 2, 1) / x_mask_sum
520
+
521
+ if self.n_speakers > 0:
522
+ g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
523
+ else:
524
+ g = None
525
+
526
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
527
+ # print(f"z: {z.shape}")
528
+
529
+ z_p = self.flow(z, y_mask, g=g)
530
+ # print(f"z_p: {z_p.shape}")
531
+
532
+ with torch.no_grad():
533
+ # negative cross-entropy
534
+ s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t]
535
+ neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True) # [b, 1, t_s]
536
+ neg_cent2 = torch.matmul(-0.5 * (z_p ** 2).transpose(1, 2),
537
+ s_p_sq_r) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
538
+ neg_cent3 = torch.matmul(z_p.transpose(1, 2), (m_p * s_p_sq_r)) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
539
+ neg_cent4 = torch.sum(-0.5 * (m_p ** 2) * s_p_sq_r, [1], keepdim=True) # [b, 1, t_s]
540
+ neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
541
+
542
+ attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
543
+ attn = monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach()
544
+
545
+ w = attn.sum(2)
546
+ if self.use_sdp:
547
+ l_length = self.dp(x, x_mask, w, g=g)
548
+ l_length = l_length / torch.sum(x_mask)
549
+ else:
550
+ logw_ = torch.log(w + 1e-6) * x_mask
551
+ logw = self.dp(x, x_mask, g=g)
552
+ l_length = torch.sum((logw - logw_) ** 2, [1, 2]) / torch.sum(x_mask) # for averaging
553
+
554
+ # expand prior
555
+ # print()
556
+ # print(f"attn: {attn.shape}")
557
+ # print(f"m_p: {m_p.shape}")
558
+ # print(f"logs_p: {logs_p.shape}")
559
+
560
+ m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
561
+ logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)
562
+ # print(f"m_p: {m_p.shape}")
563
+ # print(f"logs_p: {logs_p.shape}")
564
+
565
+ z_slice, ids_slice = commons.rand_slice_segments(z, y_lengths, self.segment_size)
566
+ # print(f"z_slice: {z_slice.shape}")
567
+
568
+ o = self.dec(z_slice, g=g)
569
+ return o, l_length, l_pitch, attn, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
570
+
571
  def infer(self, x, x_lengths, pitch, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None):
572
  x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, pitch)
573
+ pred_pitch, pitch_embedding = self.pitch_net(x, x_mask)
574
+ x = x + pitch_embedding
575
  if self.n_speakers > 0:
576
  g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
577
  else:
 
622
  z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
623
  o_hat = self.dec(z_hat * y_mask, g=g_tgt)
624
  return o_hat, y_mask, (z, z_p, z_hat)
625
+
modules.py CHANGED
@@ -1,184 +1,187 @@
 
1
  import math
2
-
 
3
  import torch
4
  from torch import nn
5
- from torch.nn import Conv1d
6
- from torch.nn import functional as t_func
 
7
  from torch.nn.utils import weight_norm, remove_weight_norm
8
 
9
  import commons
10
  from commons import init_weights, get_padding
11
  from transforms import piecewise_rational_quadratic_transform
12
 
 
13
  LRELU_SLOPE = 0.1
14
 
15
 
16
  class LayerNorm(nn.Module):
17
- def __init__(self, channels, eps=1e-5):
18
- super().__init__()
19
- self.channels = channels
20
- self.eps = eps
21
-
22
- self.gamma = nn.Parameter(torch.ones(channels))
23
- self.beta = nn.Parameter(torch.zeros(channels))
24
 
25
- def forward(self, x):
26
- x = x.transpose(1, -1)
27
- x = t_func.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
28
- return x.transpose(1, -1)
29
 
 
 
 
 
30
 
 
31
  class ConvReluNorm(nn.Module):
32
- def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
33
- super().__init__()
34
- self.in_channels = in_channels
35
- self.hidden_channels = hidden_channels
36
- self.out_channels = out_channels
37
- self.kernel_size = kernel_size
38
- self.n_layers = n_layers
39
- self.p_dropout = p_dropout
40
- assert n_layers > 1, "Number of layers should be larger than 0."
41
-
42
- self.conv_layers = nn.ModuleList()
43
- self.norm_layers = nn.ModuleList()
44
- self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size // 2))
45
- self.norm_layers.append(LayerNorm(hidden_channels))
46
- self.relu_drop = nn.Sequential(
47
- nn.ReLU(),
48
- nn.Dropout(p_dropout))
49
- for _ in range(n_layers - 1):
50
- self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size // 2))
51
- self.norm_layers.append(LayerNorm(hidden_channels))
52
- self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
53
- self.proj.weight.data.zero_()
54
- self.proj.bias.data.zero_()
55
-
56
- def forward(self, x, x_mask):
57
- x_org = x
58
- for i in range(self.n_layers):
59
- x = self.conv_layers[i](x * x_mask)
60
- x = self.norm_layers[i](x)
61
- x = self.relu_drop(x)
62
- x = x_org + self.proj(x)
63
- return x * x_mask
64
 
65
 
66
  class DDSConv(nn.Module):
67
- """
68
- Dialted and Depth-Separable Convolution
69
- """
70
-
71
- def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
72
- super().__init__()
73
- self.channels = channels
74
- self.kernel_size = kernel_size
75
- self.n_layers = n_layers
76
- self.p_dropout = p_dropout
77
-
78
- self.drop = nn.Dropout(p_dropout)
79
- self.convs_sep = nn.ModuleList()
80
- self.convs_1x1 = nn.ModuleList()
81
- self.norms_1 = nn.ModuleList()
82
- self.norms_2 = nn.ModuleList()
83
- for i in range(n_layers):
84
- dilation = kernel_size ** i
85
- padding = (kernel_size * dilation - dilation) // 2
86
- self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
87
- groups=channels, dilation=dilation, padding=padding
88
- ))
89
- self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
90
- self.norms_1.append(LayerNorm(channels))
91
- self.norms_2.append(LayerNorm(channels))
92
-
93
- def forward(self, x, x_mask, g=None):
94
- if g is not None:
95
- x = x + g
96
- for i in range(self.n_layers):
97
- y = self.convs_sep[i](x * x_mask)
98
- y = self.norms_1[i](y)
99
- y = t_func.gelu(y)
100
- y = self.convs_1x1[i](y)
101
- y = self.norms_2[i](y)
102
- y = t_func.gelu(y)
103
- y = self.drop(y)
104
- x = x + y
105
- return x * x_mask
106
 
107
 
108
  class WN(torch.nn.Module):
109
- def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
110
- super(WN, self).__init__()
111
- assert (kernel_size % 2 == 1)
112
- self.hidden_channels = hidden_channels
113
- self.kernel_size = kernel_size,
114
- self.dilation_rate = dilation_rate
115
- self.n_layers = n_layers
116
- self.gin_channels = gin_channels
117
- self.p_dropout = p_dropout
118
-
119
- self.in_layers = torch.nn.ModuleList()
120
- self.res_skip_layers = torch.nn.ModuleList()
121
- self.drop = nn.Dropout(p_dropout)
122
-
123
- if gin_channels != 0:
124
- cond_layer = torch.nn.Conv1d(gin_channels, 2 * hidden_channels * n_layers, 1)
125
- self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
126
-
127
- for i in range(n_layers):
128
- dilation = dilation_rate ** i
129
- padding = int((kernel_size * dilation - dilation) / 2)
130
- in_layer = torch.nn.Conv1d(hidden_channels, 2 * hidden_channels, kernel_size,
131
- dilation=dilation, padding=padding)
132
- in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
133
- self.in_layers.append(in_layer)
134
-
135
- # last one is not necessary
136
- if i < n_layers - 1:
137
- res_skip_channels = 2 * hidden_channels
138
- else:
139
- res_skip_channels = hidden_channels
140
-
141
- res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
142
- res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
143
- self.res_skip_layers.append(res_skip_layer)
144
-
145
- def forward(self, x, x_mask, g=None, **kwargs):
146
- output = torch.zeros_like(x)
147
- n_channels_tensor = torch.IntTensor([self.hidden_channels])
148
-
149
- if g is not None:
150
- g = self.cond_layer(g)
151
-
152
- for i in range(self.n_layers):
153
- x_in = self.in_layers[i](x)
154
- if g is not None:
155
- cond_offset = i * 2 * self.hidden_channels
156
- g_l = g[:, cond_offset:cond_offset + 2 * self.hidden_channels, :]
157
- else:
158
- g_l = torch.zeros_like(x_in)
159
-
160
- acts = commons.fused_add_tanh_sigmoid_multiply(
161
- x_in,
162
- g_l,
163
- n_channels_tensor)
164
- acts = self.drop(acts)
165
-
166
- res_skip_acts = self.res_skip_layers[i](acts)
167
- if i < self.n_layers - 1:
168
- res_acts = res_skip_acts[:, :self.hidden_channels, :]
169
- x = (x + res_acts) * x_mask
170
- output = output + res_skip_acts[:, self.hidden_channels:, :]
171
- else:
172
- output = output + res_skip_acts
173
- return output * x_mask
174
-
175
- def remove_weight_norm(self):
176
- if self.gin_channels != 0:
177
- torch.nn.utils.remove_weight_norm(self.cond_layer)
178
- for l in self.in_layers:
179
- torch.nn.utils.remove_weight_norm(l)
180
- for l in self.res_skip_layers:
181
- torch.nn.utils.remove_weight_norm(l)
182
 
183
 
184
  class ResBlock1(torch.nn.Module):
@@ -206,11 +209,11 @@ class ResBlock1(torch.nn.Module):
206
 
207
  def forward(self, x, x_mask=None):
208
  for c1, c2 in zip(self.convs1, self.convs2):
209
- xt = t_func.leaky_relu(x, LRELU_SLOPE)
210
  if x_mask is not None:
211
  xt = xt * x_mask
212
  xt = c1(xt)
213
- xt = t_func.leaky_relu(xt, LRELU_SLOPE)
214
  if x_mask is not None:
215
  xt = xt * x_mask
216
  xt = c2(xt)
@@ -239,7 +242,7 @@ class ResBlock2(torch.nn.Module):
239
 
240
  def forward(self, x, x_mask=None):
241
  for c in self.convs:
242
- xt = t_func.leaky_relu(x, LRELU_SLOPE)
243
  if x_mask is not None:
244
  xt = xt * x_mask
245
  xt = c(xt)
@@ -254,135 +257,134 @@ class ResBlock2(torch.nn.Module):
254
 
255
 
256
  class Log(nn.Module):
257
- def forward(self, x, x_mask, reverse=False, **kwargs):
258
- if not reverse:
259
- y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
260
- logdet = torch.sum(-y, [1, 2])
261
- return y, logdet
262
- else:
263
- x = torch.exp(x) * x_mask
264
- return x
265
-
266
 
267
  class Flip(nn.Module):
268
- def forward(self, x, *args, reverse=False, **kwargs):
269
- x = torch.flip(x, [1])
270
- if not reverse:
271
- logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
272
- return x, logdet
273
- else:
274
- return x
275
 
276
 
277
  class ElementwiseAffine(nn.Module):
278
- def __init__(self, channels):
279
- super().__init__()
280
- self.channels = channels
281
- self.m = nn.Parameter(torch.zeros(channels, 1))
282
- self.logs = nn.Parameter(torch.zeros(channels, 1))
283
-
284
- def forward(self, x, x_mask, reverse=False, **kwargs):
285
- if not reverse:
286
- y = self.m + torch.exp(self.logs) * x
287
- y = y * x_mask
288
- logdet = torch.sum(self.logs * x_mask, [1, 2])
289
- return y, logdet
290
- else:
291
- x = (x - self.m) * torch.exp(-self.logs) * x_mask
292
- return x
293
 
294
 
295
  class ResidualCouplingLayer(nn.Module):
296
- def __init__(self,
297
- channels,
298
- hidden_channels,
299
- kernel_size,
300
- dilation_rate,
301
- n_layers,
302
- p_dropout=0,
303
- gin_channels=0,
304
- mean_only=False):
305
- assert channels % 2 == 0, "channels should be divisible by 2"
306
- super().__init__()
307
- self.channels = channels
308
- self.hidden_channels = hidden_channels
309
- self.kernel_size = kernel_size
310
- self.dilation_rate = dilation_rate
311
- self.n_layers = n_layers
312
- self.half_channels = channels // 2
313
- self.mean_only = mean_only
314
-
315
- self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
316
- self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout,
317
- gin_channels=gin_channels)
318
- self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
319
- self.post.weight.data.zero_()
320
- self.post.bias.data.zero_()
321
-
322
- def forward(self, x, x_mask, g=None, reverse=False):
323
- x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
324
- h = self.pre(x0) * x_mask
325
- h = self.enc(h, x_mask, g=g)
326
- stats = self.post(h) * x_mask
327
- if not self.mean_only:
328
- m, logs = torch.split(stats, [self.half_channels] * 2, 1)
329
- else:
330
- m = stats
331
- logs = torch.zeros_like(m)
332
-
333
- if not reverse:
334
- x1 = m + x1 * torch.exp(logs) * x_mask
335
- x = torch.cat([x0, x1], 1)
336
- logdet = torch.sum(logs, [1, 2])
337
- return x, logdet
338
- else:
339
- x1 = (x1 - m) * torch.exp(-logs) * x_mask
340
- x = torch.cat([x0, x1], 1)
341
- return x
342
 
343
 
344
  class ConvFlow(nn.Module):
345
- def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0):
346
- super().__init__()
347
- self.in_channels = in_channels
348
- self.filter_channels = filter_channels
349
- self.kernel_size = kernel_size
350
- self.n_layers = n_layers
351
- self.num_bins = num_bins
352
- self.tail_bound = tail_bound
353
- self.half_channels = in_channels // 2
354
-
355
- self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
356
- self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.)
357
- self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1)
358
- self.proj.weight.data.zero_()
359
- self.proj.bias.data.zero_()
360
-
361
- def forward(self, x, x_mask, g=None, reverse=False):
362
- x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
363
- h = self.pre(x0)
364
- h = self.convs(h, x_mask, g=g)
365
- h = self.proj(h) * x_mask
366
-
367
- b, c, t = x0.shape
368
- h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
369
-
370
- unnormalized_widths = h[..., :self.num_bins] / math.sqrt(self.filter_channels)
371
- unnormalized_heights = h[..., self.num_bins:2 * self.num_bins] / math.sqrt(self.filter_channels)
372
- unnormalized_derivatives = h[..., 2 * self.num_bins:]
373
-
374
- x1, logabsdet = piecewise_rational_quadratic_transform(x1,
375
- unnormalized_widths,
376
- unnormalized_heights,
377
- unnormalized_derivatives,
378
- inverse=reverse,
379
- tails='linear',
380
- tail_bound=self.tail_bound
381
- )
382
-
383
- x = torch.cat([x0, x1], 1) * x_mask
384
- logdet = torch.sum(logabsdet * x_mask, [1, 2])
385
- if not reverse:
386
- return x, logdet
387
- else:
388
- return x
 
1
+ import copy
2
  import math
3
+ import numpy as np
4
+ import scipy
5
  import torch
6
  from torch import nn
7
+ from torch.nn import functional as F
8
+
9
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
10
  from torch.nn.utils import weight_norm, remove_weight_norm
11
 
12
  import commons
13
  from commons import init_weights, get_padding
14
  from transforms import piecewise_rational_quadratic_transform
15
 
16
+
17
  LRELU_SLOPE = 0.1
18
 
19
 
20
  class LayerNorm(nn.Module):
21
+ def __init__(self, channels, eps=1e-5):
22
+ super().__init__()
23
+ self.channels = channels
24
+ self.eps = eps
 
 
 
25
 
26
+ self.gamma = nn.Parameter(torch.ones(channels))
27
+ self.beta = nn.Parameter(torch.zeros(channels))
 
 
28
 
29
+ def forward(self, x):
30
+ x = x.transpose(1, -1)
31
+ x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
32
+ return x.transpose(1, -1)
33
 
34
+
35
  class ConvReluNorm(nn.Module):
36
+ def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
37
+ super().__init__()
38
+ self.in_channels = in_channels
39
+ self.hidden_channels = hidden_channels
40
+ self.out_channels = out_channels
41
+ self.kernel_size = kernel_size
42
+ self.n_layers = n_layers
43
+ self.p_dropout = p_dropout
44
+ assert n_layers > 1, "Number of layers should be larger than 0."
45
+
46
+ self.conv_layers = nn.ModuleList()
47
+ self.norm_layers = nn.ModuleList()
48
+ self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
49
+ self.norm_layers.append(LayerNorm(hidden_channels))
50
+ self.relu_drop = nn.Sequential(
51
+ nn.ReLU(),
52
+ nn.Dropout(p_dropout))
53
+ for _ in range(n_layers-1):
54
+ self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
55
+ self.norm_layers.append(LayerNorm(hidden_channels))
56
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
57
+ self.proj.weight.data.zero_()
58
+ self.proj.bias.data.zero_()
59
+
60
+ def forward(self, x, x_mask):
61
+ x_org = x
62
+ for i in range(self.n_layers):
63
+ x = self.conv_layers[i](x * x_mask)
64
+ x = self.norm_layers[i](x)
65
+ x = self.relu_drop(x)
66
+ x = x_org + self.proj(x)
67
+ return x * x_mask
68
 
69
 
70
  class DDSConv(nn.Module):
71
+ """
72
+ Dialted and Depth-Separable Convolution
73
+ """
74
+ def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
75
+ super().__init__()
76
+ self.channels = channels
77
+ self.kernel_size = kernel_size
78
+ self.n_layers = n_layers
79
+ self.p_dropout = p_dropout
80
+
81
+ self.drop = nn.Dropout(p_dropout)
82
+ self.convs_sep = nn.ModuleList()
83
+ self.convs_1x1 = nn.ModuleList()
84
+ self.norms_1 = nn.ModuleList()
85
+ self.norms_2 = nn.ModuleList()
86
+ for i in range(n_layers):
87
+ dilation = kernel_size ** i
88
+ padding = (kernel_size * dilation - dilation) // 2
89
+ self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
90
+ groups=channels, dilation=dilation, padding=padding
91
+ ))
92
+ self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
93
+ self.norms_1.append(LayerNorm(channels))
94
+ self.norms_2.append(LayerNorm(channels))
95
+
96
+ def forward(self, x, x_mask, g=None):
97
+ if g is not None:
98
+ x = x + g
99
+ for i in range(self.n_layers):
100
+ y = self.convs_sep[i](x * x_mask)
101
+ y = self.norms_1[i](y)
102
+ y = F.gelu(y)
103
+ y = self.convs_1x1[i](y)
104
+ y = self.norms_2[i](y)
105
+ y = F.gelu(y)
106
+ y = self.drop(y)
107
+ x = x + y
108
+ return x * x_mask
 
109
 
110
 
111
  class WN(torch.nn.Module):
112
+ def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
113
+ super(WN, self).__init__()
114
+ assert(kernel_size % 2 == 1)
115
+ self.hidden_channels =hidden_channels
116
+ self.kernel_size = kernel_size,
117
+ self.dilation_rate = dilation_rate
118
+ self.n_layers = n_layers
119
+ self.gin_channels = gin_channels
120
+ self.p_dropout = p_dropout
121
+
122
+ self.in_layers = torch.nn.ModuleList()
123
+ self.res_skip_layers = torch.nn.ModuleList()
124
+ self.drop = nn.Dropout(p_dropout)
125
+
126
+ if gin_channels != 0:
127
+ cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
128
+ self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
129
+
130
+ for i in range(n_layers):
131
+ dilation = dilation_rate ** i
132
+ padding = int((kernel_size * dilation - dilation) / 2)
133
+ in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
134
+ dilation=dilation, padding=padding)
135
+ in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
136
+ self.in_layers.append(in_layer)
137
+
138
+ # last one is not necessary
139
+ if i < n_layers - 1:
140
+ res_skip_channels = 2 * hidden_channels
141
+ else:
142
+ res_skip_channels = hidden_channels
143
+
144
+ res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
145
+ res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
146
+ self.res_skip_layers.append(res_skip_layer)
147
+
148
+ def forward(self, x, x_mask, g=None, **kwargs):
149
+ output = torch.zeros_like(x)
150
+ n_channels_tensor = torch.IntTensor([self.hidden_channels])
151
+
152
+ if g is not None:
153
+ g = self.cond_layer(g)
154
+
155
+ for i in range(self.n_layers):
156
+ x_in = self.in_layers[i](x)
157
+ if g is not None:
158
+ cond_offset = i * 2 * self.hidden_channels
159
+ g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
160
+ else:
161
+ g_l = torch.zeros_like(x_in)
162
+
163
+ acts = commons.fused_add_tanh_sigmoid_multiply(
164
+ x_in,
165
+ g_l,
166
+ n_channels_tensor)
167
+ acts = self.drop(acts)
168
+
169
+ res_skip_acts = self.res_skip_layers[i](acts)
170
+ if i < self.n_layers - 1:
171
+ res_acts = res_skip_acts[:,:self.hidden_channels,:]
172
+ x = (x + res_acts) * x_mask
173
+ output = output + res_skip_acts[:,self.hidden_channels:,:]
174
+ else:
175
+ output = output + res_skip_acts
176
+ return output * x_mask
177
+
178
+ def remove_weight_norm(self):
179
+ if self.gin_channels != 0:
180
+ torch.nn.utils.remove_weight_norm(self.cond_layer)
181
+ for l in self.in_layers:
182
+ torch.nn.utils.remove_weight_norm(l)
183
+ for l in self.res_skip_layers:
184
+ torch.nn.utils.remove_weight_norm(l)
185
 
186
 
187
  class ResBlock1(torch.nn.Module):
 
209
 
210
  def forward(self, x, x_mask=None):
211
  for c1, c2 in zip(self.convs1, self.convs2):
212
+ xt = F.leaky_relu(x, LRELU_SLOPE)
213
  if x_mask is not None:
214
  xt = xt * x_mask
215
  xt = c1(xt)
216
+ xt = F.leaky_relu(xt, LRELU_SLOPE)
217
  if x_mask is not None:
218
  xt = xt * x_mask
219
  xt = c2(xt)
 
242
 
243
  def forward(self, x, x_mask=None):
244
  for c in self.convs:
245
+ xt = F.leaky_relu(x, LRELU_SLOPE)
246
  if x_mask is not None:
247
  xt = xt * x_mask
248
  xt = c(xt)
 
257
 
258
 
259
  class Log(nn.Module):
260
+ def forward(self, x, x_mask, reverse=False, **kwargs):
261
+ if not reverse:
262
+ y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
263
+ logdet = torch.sum(-y, [1, 2])
264
+ return y, logdet
265
+ else:
266
+ x = torch.exp(x) * x_mask
267
+ return x
268
+
269
 
270
  class Flip(nn.Module):
271
+ def forward(self, x, *args, reverse=False, **kwargs):
272
+ x = torch.flip(x, [1])
273
+ if not reverse:
274
+ logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
275
+ return x, logdet
276
+ else:
277
+ return x
278
 
279
 
280
  class ElementwiseAffine(nn.Module):
281
+ def __init__(self, channels):
282
+ super().__init__()
283
+ self.channels = channels
284
+ self.m = nn.Parameter(torch.zeros(channels,1))
285
+ self.logs = nn.Parameter(torch.zeros(channels,1))
286
+
287
+ def forward(self, x, x_mask, reverse=False, **kwargs):
288
+ if not reverse:
289
+ y = self.m + torch.exp(self.logs) * x
290
+ y = y * x_mask
291
+ logdet = torch.sum(self.logs * x_mask, [1,2])
292
+ return y, logdet
293
+ else:
294
+ x = (x - self.m) * torch.exp(-self.logs) * x_mask
295
+ return x
296
 
297
 
298
  class ResidualCouplingLayer(nn.Module):
299
+ def __init__(self,
300
+ channels,
301
+ hidden_channels,
302
+ kernel_size,
303
+ dilation_rate,
304
+ n_layers,
305
+ p_dropout=0,
306
+ gin_channels=0,
307
+ mean_only=False):
308
+ assert channels % 2 == 0, "channels should be divisible by 2"
309
+ super().__init__()
310
+ self.channels = channels
311
+ self.hidden_channels = hidden_channels
312
+ self.kernel_size = kernel_size
313
+ self.dilation_rate = dilation_rate
314
+ self.n_layers = n_layers
315
+ self.half_channels = channels // 2
316
+ self.mean_only = mean_only
317
+
318
+ self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
319
+ self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
320
+ self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
321
+ self.post.weight.data.zero_()
322
+ self.post.bias.data.zero_()
323
+
324
+ def forward(self, x, x_mask, g=None, reverse=False):
325
+ x0, x1 = torch.split(x, [self.half_channels]*2, 1)
326
+ h = self.pre(x0) * x_mask
327
+ h = self.enc(h, x_mask, g=g)
328
+ stats = self.post(h) * x_mask
329
+ if not self.mean_only:
330
+ m, logs = torch.split(stats, [self.half_channels]*2, 1)
331
+ else:
332
+ m = stats
333
+ logs = torch.zeros_like(m)
334
+
335
+ if not reverse:
336
+ x1 = m + x1 * torch.exp(logs) * x_mask
337
+ x = torch.cat([x0, x1], 1)
338
+ logdet = torch.sum(logs, [1,2])
339
+ return x, logdet
340
+ else:
341
+ x1 = (x1 - m) * torch.exp(-logs) * x_mask
342
+ x = torch.cat([x0, x1], 1)
343
+ return x
 
344
 
345
 
346
  class ConvFlow(nn.Module):
347
+ def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0):
348
+ super().__init__()
349
+ self.in_channels = in_channels
350
+ self.filter_channels = filter_channels
351
+ self.kernel_size = kernel_size
352
+ self.n_layers = n_layers
353
+ self.num_bins = num_bins
354
+ self.tail_bound = tail_bound
355
+ self.half_channels = in_channels // 2
356
+
357
+ self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
358
+ self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.)
359
+ self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1)
360
+ self.proj.weight.data.zero_()
361
+ self.proj.bias.data.zero_()
362
+
363
+ def forward(self, x, x_mask, g=None, reverse=False):
364
+ x0, x1 = torch.split(x, [self.half_channels]*2, 1)
365
+ h = self.pre(x0)
366
+ h = self.convs(h, x_mask, g=g)
367
+ h = self.proj(h) * x_mask
368
+
369
+ b, c, t = x0.shape
370
+ h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
371
+
372
+ unnormalized_widths = h[..., :self.num_bins] / math.sqrt(self.filter_channels)
373
+ unnormalized_heights = h[..., self.num_bins:2*self.num_bins] / math.sqrt(self.filter_channels)
374
+ unnormalized_derivatives = h[..., 2 * self.num_bins:]
375
+
376
+ x1, logabsdet = piecewise_rational_quadratic_transform(x1,
377
+ unnormalized_widths,
378
+ unnormalized_heights,
379
+ unnormalized_derivatives,
380
+ inverse=reverse,
381
+ tails='linear',
382
+ tail_bound=self.tail_bound
383
+ )
384
+
385
+ x = torch.cat([x0, x1], 1) * x_mask
386
+ logdet = torch.sum(logabsdet * x_mask, [1,2])
387
+ if not reverse:
388
+ return x, logdet
389
+ else:
390
+ return x
monotonic_align/__init__.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ from .monotonic_align.core import maximum_path_c
4
+
5
+
6
+ def maximum_path(neg_cent, mask):
7
+ """ Cython optimized version.
8
+ neg_cent: [b, t_t, t_s]
9
+ mask: [b, t_t, t_s]
10
+ """
11
+ device = neg_cent.device
12
+ dtype = neg_cent.dtype
13
+ neg_cent = neg_cent.data.cpu().numpy().astype(np.float32)
14
+ path = np.zeros(neg_cent.shape, dtype=np.int32)
15
+
16
+ t_t_max = mask.sum(1)[:, 0].data.cpu().numpy().astype(np.int32)
17
+ t_s_max = mask.sum(2)[:, 0].data.cpu().numpy().astype(np.int32)
18
+ maximum_path_c(path, neg_cent, t_t_max, t_s_max)
19
+ return torch.from_numpy(path).to(device=device, dtype=dtype)
monotonic_align/core.pyx ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ cimport cython
2
+ from cython.parallel import prange
3
+
4
+
5
+ @cython.boundscheck(False)
6
+ @cython.wraparound(False)
7
+ cdef void maximum_path_each(int[:,::1] path, float[:,::1] value, int t_y, int t_x, float max_neg_val=-1e9) nogil:
8
+ cdef int x
9
+ cdef int y
10
+ cdef float v_prev
11
+ cdef float v_cur
12
+ cdef float tmp
13
+ cdef int index = t_x - 1
14
+
15
+ for y in range(t_y):
16
+ for x in range(max(0, t_x + y - t_y), min(t_x, y + 1)):
17
+ if x == y:
18
+ v_cur = max_neg_val
19
+ else:
20
+ v_cur = value[y-1, x]
21
+ if x == 0:
22
+ if y == 0:
23
+ v_prev = 0.
24
+ else:
25
+ v_prev = max_neg_val
26
+ else:
27
+ v_prev = value[y-1, x-1]
28
+ value[y, x] += max(v_prev, v_cur)
29
+
30
+ for y in range(t_y - 1, -1, -1):
31
+ path[y, index] = 1
32
+ if index != 0 and (index == y or value[y-1, index] < value[y-1, index-1]):
33
+ index = index - 1
34
+
35
+
36
+ @cython.boundscheck(False)
37
+ @cython.wraparound(False)
38
+ cpdef void maximum_path_c(int[:,:,::1] paths, float[:,:,::1] values, int[::1] t_ys, int[::1] t_xs) nogil:
39
+ cdef int b = paths.shape[0]
40
+ cdef int i
41
+ for i in prange(b, nogil=True):
42
+ maximum_path_each(paths[i], values[i], t_ys[i], t_xs[i])
monotonic_align/setup.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ from distutils.core import setup
2
+ from Cython.Build import cythonize
3
+ import numpy
4
+
5
+ setup(
6
+ name = 'monotonic_align',
7
+ ext_modules = cythonize("core.pyx"),
8
+ include_dirs=[numpy.get_include()]
9
+ )
83_epochs.pth → nyarumodel.pth RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5b2d02f32e9df815c473e775187a5cbcc3fe60412681ec462d13570d7191b5e3
3
- size 221251405
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07442f7d1cc18cace0d18051c6a4f5757bfbd2f4701bd3be2691d398656d24c4
3
+ size 256011087
preprocess.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import text
3
+ from utils import load_filepaths_and_text
4
+
5
+ if __name__ == '__main__':
6
+ parser = argparse.ArgumentParser()
7
+ parser.add_argument("--out_extension", default="cleaned")
8
+ parser.add_argument("--text_index", default=1, type=int)
9
+ parser.add_argument("--filelists", nargs="+", default=["filelists/ljs_audio_text_val_filelist.txt", "filelists/ljs_audio_text_test_filelist.txt"])
10
+ parser.add_argument("--text_cleaners", nargs="+", default=["english_cleaners2"])
11
+
12
+ args = parser.parse_args()
13
+
14
+
15
+ for filelist in args.filelists:
16
+ print("START:", filelist)
17
+ filepaths_and_text = load_filepaths_and_text(filelist)
18
+ for i in range(len(filepaths_and_text)):
19
+ original_text = filepaths_and_text[i][args.text_index]
20
+ cleaned_text = text._clean_text(original_text, args.text_cleaners)
21
+ filepaths_and_text[i][args.text_index] = cleaned_text
22
+
23
+ new_filelist = filelist + "." + args.out_extension
24
+ with open(new_filelist, "w", encoding="utf-8") as f:
25
+ f.writelines(["|".join(x) + "\n" for x in filepaths_and_text])
preprocess_wave.py CHANGED
@@ -1,11 +1,9 @@
1
  import os
2
-
3
  import librosa
4
- import numpy as np
5
  import pyworld
6
- from scipy.io import wavfile
7
-
8
  import utils
 
 
9
 
10
 
11
  class FeatureInput(object):
@@ -37,7 +35,7 @@ class FeatureInput(object):
37
  def coarse_f0(self, f0):
38
  f0_mel = 1127 * np.log(1 + f0 / 700)
39
  f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * (
40
- self.f0_bin - 2
41
  ) / (self.f0_mel_max - self.f0_mel_min) + 1
42
 
43
  # use 0 or 1
@@ -54,7 +52,7 @@ class FeatureInput(object):
54
  def coarse_f0_ts(self, f0):
55
  f0_mel = 1127 * (1 + f0 / 700).log()
56
  f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * (
57
- self.f0_bin - 2
58
  ) / (self.f0_mel_max - self.f0_mel_min) + 1
59
 
60
  # use 0 or 1
 
1
  import os
 
2
  import librosa
 
3
  import pyworld
 
 
4
  import utils
5
+ import numpy as np
6
+ from scipy.io import wavfile
7
 
8
 
9
  class FeatureInput(object):
 
35
  def coarse_f0(self, f0):
36
  f0_mel = 1127 * np.log(1 + f0 / 700)
37
  f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * (
38
+ self.f0_bin - 2
39
  ) / (self.f0_mel_max - self.f0_mel_min) + 1
40
 
41
  # use 0 or 1
 
52
  def coarse_f0_ts(self, f0):
53
  f0_mel = 1127 * (1 + f0 / 700).log()
54
  f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * (
55
+ self.f0_bin - 2
56
  ) / (self.f0_mel_max - self.f0_mel_min) + 1
57
 
58
  # use 0 or 1
requirements.txt CHANGED
@@ -4,13 +4,9 @@ matplotlib==3.3.1
4
  numpy==1.18.5
5
  phonemizer==2.2.1
6
  scipy==1.5.2
 
7
  torch
8
  torchvision
9
  Unidecode==1.1.1
10
  torchaudio
11
  pyworld
12
- scipy
13
- keras
14
- mir-eval
15
- pretty-midi
16
- pydub
 
4
  numpy==1.18.5
5
  phonemizer==2.2.1
6
  scipy==1.5.2
7
+ tensorboard==2.3.0
8
  torch
9
  torchvision
10
  Unidecode==1.1.1
11
  torchaudio
12
  pyworld
 
 
 
 
 
slicer.py DELETED
@@ -1,163 +0,0 @@
1
- import os.path
2
- import time
3
- from argparse import ArgumentParser
4
-
5
- import librosa
6
- import numpy as np
7
- import soundfile
8
- from scipy.ndimage import maximum_filter1d, uniform_filter1d
9
-
10
-
11
- def timeit(func):
12
- def run(*args, **kwargs):
13
- t = time.time()
14
- res = func(*args, **kwargs)
15
- print('executing \'%s\' costed %.3fs' % (func.__name__, time.time() - t))
16
- return res
17
-
18
- return run
19
-
20
-
21
- # @timeit
22
- def _window_maximum(arr, win_sz):
23
- return maximum_filter1d(arr, size=win_sz)[win_sz // 2: win_sz // 2 + arr.shape[0] - win_sz + 1]
24
-
25
-
26
- # @timeit
27
- def _window_rms(arr, win_sz):
28
- filtered = np.sqrt(uniform_filter1d(np.power(arr, 2), win_sz) - np.power(uniform_filter1d(arr, win_sz), 2))
29
- return filtered[win_sz // 2: win_sz // 2 + arr.shape[0] - win_sz + 1]
30
-
31
-
32
- def level2db(levels, eps=1e-12):
33
- return 20 * np.log10(np.clip(levels, a_min=eps, a_max=1))
34
-
35
-
36
- def _apply_slice(audio, begin, end):
37
- if len(audio.shape) > 1:
38
- return audio[:, begin: end]
39
- else:
40
- return audio[begin: end]
41
-
42
-
43
- class Slicer:
44
- def __init__(self,
45
- sr: int,
46
- db_threshold: float = -40,
47
- min_length: int = 5000,
48
- win_l: int = 300,
49
- win_s: int = 20,
50
- max_silence_kept: int = 500):
51
- self.db_threshold = db_threshold
52
- self.min_samples = round(sr * min_length / 1000)
53
- self.win_ln = round(sr * win_l / 1000)
54
- self.win_sn = round(sr * win_s / 1000)
55
- self.max_silence = round(sr * max_silence_kept / 1000)
56
- if not self.min_samples >= self.win_ln >= self.win_sn:
57
- raise ValueError('The following condition must be satisfied: min_length >= win_l >= win_s')
58
- if not self.max_silence >= self.win_sn:
59
- raise ValueError('The following condition must be satisfied: max_silence_kept >= win_s')
60
-
61
- @timeit
62
- def slice(self, audio):
63
- if len(audio.shape) > 1:
64
- samples = librosa.to_mono(audio)
65
- else:
66
- samples = audio
67
- if samples.shape[0] <= self.min_samples:
68
- return [audio]
69
- # get absolute amplitudes
70
- abs_amp = np.abs(samples - np.mean(samples))
71
- # calculate local maximum with large window
72
- win_max_db = level2db(_window_maximum(abs_amp, win_sz=self.win_ln))
73
- sil_tags = []
74
- left = right = 0
75
- while right < win_max_db.shape[0]:
76
- if win_max_db[right] < self.db_threshold:
77
- right += 1
78
- elif left == right:
79
- left += 1
80
- right += 1
81
- else:
82
- if left == 0:
83
- split_loc_l = left
84
- else:
85
- sil_left_n = min(self.max_silence, (right + self.win_ln - left) // 2)
86
- rms_db_left = level2db(_window_rms(samples[left: left + sil_left_n], win_sz=self.win_sn))
87
- split_win_l = left + np.argmin(rms_db_left)
88
- split_loc_l = split_win_l + np.argmin(abs_amp[split_win_l: split_win_l + self.win_sn])
89
- if len(sil_tags) != 0 and split_loc_l - sil_tags[-1][1] < self.min_samples and right < win_max_db.shape[
90
- 0] - 1:
91
- right += 1
92
- left = right
93
- continue
94
- if right == win_max_db.shape[0] - 1:
95
- split_loc_r = right + self.win_ln
96
- else:
97
- sil_right_n = min(self.max_silence, (right + self.win_ln - left) // 2)
98
- rms_db_right = level2db(_window_rms(samples[right + self.win_ln - sil_right_n: right + self.win_ln],
99
- win_sz=self.win_sn))
100
- split_win_r = right + self.win_ln - sil_right_n + np.argmin(rms_db_right)
101
- split_loc_r = split_win_r + np.argmin(abs_amp[split_win_r: split_win_r + self.win_sn])
102
- sil_tags.append((split_loc_l, split_loc_r))
103
- right += 1
104
- left = right
105
- if left != right:
106
- sil_left_n = min(self.max_silence, (right + self.win_ln - left) // 2)
107
- rms_db_left = level2db(_window_rms(samples[left: left + sil_left_n], win_sz=self.win_sn))
108
- split_win_l = left + np.argmin(rms_db_left)
109
- split_loc_l = split_win_l + np.argmin(abs_amp[split_win_l: split_win_l + self.win_sn])
110
- sil_tags.append((split_loc_l, samples.shape[0]))
111
- if len(sil_tags) == 0:
112
- return [audio]
113
- else:
114
- chunks = []
115
- for i in range(0, len(sil_tags)):
116
- chunks.append(int((sil_tags[i][0] + sil_tags[i][1]) / 2))
117
- return chunks
118
-
119
-
120
- def main():
121
- parser = ArgumentParser()
122
- parser.add_argument('audio', type=str, help='The audio to be sliced')
123
- parser.add_argument('--out_name', type=str, help='Output directory of the sliced audio clips')
124
- parser.add_argument('--out', type=str, help='Output directory of the sliced audio clips')
125
- parser.add_argument('--db_thresh', type=float, required=False, default=-40,
126
- help='The dB threshold for silence detection')
127
- parser.add_argument('--min_len', type=int, required=False, default=5000,
128
- help='The minimum milliseconds required for each sliced audio clip')
129
- parser.add_argument('--win_l', type=int, required=False, default=300,
130
- help='Size of the large sliding window, presented in milliseconds')
131
- parser.add_argument('--win_s', type=int, required=False, default=20,
132
- help='Size of the small sliding window, presented in milliseconds')
133
- parser.add_argument('--max_sil_kept', type=int, required=False, default=500,
134
- help='The maximum silence length kept around the sliced audio, presented in milliseconds')
135
- args = parser.parse_args()
136
- out = args.out
137
- if out is None:
138
- out = os.path.dirname(os.path.abspath(args.audio))
139
- audio, sr = librosa.load(args.audio, sr=None)
140
- slicer = Slicer(
141
- sr=sr,
142
- db_threshold=args.db_thresh,
143
- min_length=args.min_len,
144
- win_l=args.win_l,
145
- win_s=args.win_s,
146
- max_silence_kept=args.max_sil_kept
147
- )
148
- chunks = slicer.slice(audio)
149
- if not os.path.exists(args.out):
150
- os.makedirs(args.out)
151
- start = 0
152
- end_id = 0
153
- for i, chunk in enumerate(chunks):
154
- end = chunk
155
- soundfile.write(os.path.join(out, f'%s-%s.wav' % (args.out_name, str(i).zfill(2))), audio[start:end], sr)
156
- start = end
157
- end_id = i + 1
158
- soundfile.write(os.path.join(out, f'%s-%s.wav' % (args.out_name, str(end_id).zfill(2))), audio[start:len(audio)],
159
- sr)
160
-
161
-
162
- if __name__ == '__main__':
163
- main()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
text/LICENSE ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Copyright (c) 2017 Keith Ito
2
+
3
+ Permission is hereby granted, free of charge, to any person obtaining a copy
4
+ of this software and associated documentation files (the "Software"), to deal
5
+ in the Software without restriction, including without limitation the rights
6
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
7
+ copies of the Software, and to permit persons to whom the Software is
8
+ furnished to do so, subject to the following conditions:
9
+
10
+ The above copyright notice and this permission notice shall be included in
11
+ all copies or substantial portions of the Software.
12
+
13
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
18
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
19
+ THE SOFTWARE.
text/__init__.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ from https://github.com/keithito/tacotron """
2
+ from text import cleaners
3
+ from text.symbols import symbols
4
+
5
+
6
+ # Mappings from symbol to numeric ID and vice versa:
7
+ _symbol_to_id = {s: i for i, s in enumerate(symbols)}
8
+ _id_to_symbol = {i: s for i, s in enumerate(symbols)}
9
+
10
+
11
+ def text_to_sequence(text, cleaner_names):
12
+ '''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
13
+ Args:
14
+ text: string to convert to a sequence
15
+ cleaner_names: names of the cleaner functions to run the text through
16
+ Returns:
17
+ List of integers corresponding to the symbols in the text
18
+ '''
19
+ sequence = []
20
+
21
+ clean_text = _clean_text(text, cleaner_names)
22
+ for symbol in clean_text:
23
+ symbol_id = _symbol_to_id[symbol]
24
+ sequence += [symbol_id]
25
+ return sequence
26
+
27
+
28
+ def cleaned_text_to_sequence(cleaned_text):
29
+ '''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
30
+ Args:
31
+ text: string to convert to a sequence
32
+ Returns:
33
+ List of integers corresponding to the symbols in the text
34
+ '''
35
+ sequence = [_symbol_to_id[symbol] for symbol in cleaned_text]
36
+ return sequence
37
+
38
+
39
+ def sequence_to_text(sequence):
40
+ '''Converts a sequence of IDs back to a string'''
41
+ result = ''
42
+ for symbol_id in sequence:
43
+ s = _id_to_symbol[symbol_id]
44
+ result += s
45
+ return result
46
+
47
+
48
+ def _clean_text(text, cleaner_names):
49
+ for name in cleaner_names:
50
+ cleaner = getattr(cleaners, name)
51
+ if not cleaner:
52
+ raise Exception('Unknown cleaner: %s' % name)
53
+ text = cleaner(text)
54
+ return text
text/cleaners.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ from https://github.com/keithito/tacotron """
2
+
3
+ '''
4
+ Cleaners are transformations that run over the input text at both training and eval time.
5
+
6
+ Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners"
7
+ hyperparameter. Some cleaners are English-specific. You'll typically want to use:
8
+ 1. "english_cleaners" for English text
9
+ 2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using
10
+ the Unidecode library (https://pypi.python.org/pypi/Unidecode)
11
+ 3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update
12
+ the symbols in symbols.py to match your data).
13
+ '''
14
+
15
+ import re
16
+ from unidecode import unidecode
17
+ from phonemizer import phonemize
18
+
19
+
20
+ # Regular expression matching whitespace:
21
+ _whitespace_re = re.compile(r'\s+')
22
+
23
+ # List of (regular expression, replacement) pairs for abbreviations:
24
+ _abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [
25
+ ('mrs', 'misess'),
26
+ ('mr', 'mister'),
27
+ ('dr', 'doctor'),
28
+ ('st', 'saint'),
29
+ ('co', 'company'),
30
+ ('jr', 'junior'),
31
+ ('maj', 'major'),
32
+ ('gen', 'general'),
33
+ ('drs', 'doctors'),
34
+ ('rev', 'reverend'),
35
+ ('lt', 'lieutenant'),
36
+ ('hon', 'honorable'),
37
+ ('sgt', 'sergeant'),
38
+ ('capt', 'captain'),
39
+ ('esq', 'esquire'),
40
+ ('ltd', 'limited'),
41
+ ('col', 'colonel'),
42
+ ('ft', 'fort'),
43
+ ]]
44
+
45
+
46
+ def expand_abbreviations(text):
47
+ for regex, replacement in _abbreviations:
48
+ text = re.sub(regex, replacement, text)
49
+ return text
50
+
51
+
52
+ def expand_numbers(text):
53
+ return normalize_numbers(text)
54
+
55
+
56
+ def lowercase(text):
57
+ return text.lower()
58
+
59
+
60
+ def collapse_whitespace(text):
61
+ return re.sub(_whitespace_re, ' ', text)
62
+
63
+
64
+ def convert_to_ascii(text):
65
+ return unidecode(text)
66
+
67
+
68
+ def basic_cleaners(text):
69
+ '''Basic pipeline that lowercases and collapses whitespace without transliteration.'''
70
+ text = lowercase(text)
71
+ text = collapse_whitespace(text)
72
+ return text
73
+
74
+
75
+ def transliteration_cleaners(text):
76
+ '''Pipeline for non-English text that transliterates to ASCII.'''
77
+ text = convert_to_ascii(text)
78
+ text = lowercase(text)
79
+ text = collapse_whitespace(text)
80
+ return text
81
+
82
+
83
+ def english_cleaners(text):
84
+ '''Pipeline for English text, including abbreviation expansion.'''
85
+ text = convert_to_ascii(text)
86
+ text = lowercase(text)
87
+ text = expand_abbreviations(text)
88
+ phonemes = phonemize(text, language='en-us', backend='espeak', strip=True)
89
+ phonemes = collapse_whitespace(phonemes)
90
+ return phonemes
91
+
92
+
93
+ def english_cleaners2(text):
94
+ '''Pipeline for English text, including abbreviation expansion. + punctuation + stress'''
95
+ text = convert_to_ascii(text)
96
+ text = lowercase(text)
97
+ text = expand_abbreviations(text)
98
+ phonemes = phonemize(text, language='en-us', backend='espeak', strip=True, preserve_punctuation=True, with_stress=True)
99
+ phonemes = collapse_whitespace(phonemes)
100
+ return phonemes
text/symbols.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ from https://github.com/keithito/tacotron """
2
+
3
+ '''
4
+ Defines the set of symbols used in text input to the model.
5
+ '''
6
+ _pad = '_'
7
+ _punctuation = ';:,.!?¡¿—…"«»“” '
8
+ _letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
9
+ _letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
10
+
11
+
12
+ # Export all symbols:
13
+ symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
14
+
15
+ # Special symbol ids
16
+ SPACE_ID = symbols.index(" ")
train.py ADDED
@@ -0,0 +1,295 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import argparse
4
+ import itertools
5
+ import math
6
+ import torch
7
+ from torch import nn, optim
8
+ from torch.nn import functional as F
9
+ from torch.utils.data import DataLoader
10
+ from torch.utils.tensorboard import SummaryWriter
11
+ import torch.multiprocessing as mp
12
+ import torch.distributed as dist
13
+ from torch.nn.parallel import DistributedDataParallel as DDP
14
+ from torch.cuda.amp import autocast, GradScaler
15
+
16
+ import librosa
17
+ import logging
18
+
19
+ logging.getLogger('numba').setLevel(logging.WARNING)
20
+
21
+ import commons
22
+ import utils
23
+ from data_utils import (
24
+ TextAudioLoader,
25
+ TextAudioCollate,
26
+ DistributedBucketSampler
27
+ )
28
+ from models import (
29
+ SynthesizerTrn,
30
+ MultiPeriodDiscriminator,
31
+ )
32
+ from losses import (
33
+ generator_loss,
34
+ discriminator_loss,
35
+ feature_loss,
36
+ kl_loss
37
+ )
38
+ from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
39
+ from text.symbols import symbols
40
+
41
+
42
+ torch.backends.cudnn.benchmark = True
43
+ global_step = 0
44
+
45
+
46
+ def main():
47
+ """Assume Single Node Multi GPUs Training Only"""
48
+ assert torch.cuda.is_available(), "CPU training is not allowed."
49
+
50
+ n_gpus = torch.cuda.device_count()
51
+ os.environ['MASTER_ADDR'] = 'localhost'
52
+ os.environ['MASTER_PORT'] = '25565'
53
+
54
+ hps = utils.get_hparams()
55
+ mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,))
56
+
57
+
58
+ def run(rank, n_gpus, hps):
59
+ global global_step
60
+ if rank == 0:
61
+ logger = utils.get_logger(hps.model_dir)
62
+ logger.info(hps)
63
+ utils.check_git_hash(hps.model_dir)
64
+ writer = SummaryWriter(log_dir=hps.model_dir)
65
+ writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
66
+
67
+ dist.init_process_group(backend='nccl', init_method='env://', world_size=n_gpus, rank=rank)
68
+ torch.manual_seed(hps.train.seed)
69
+ torch.cuda.set_device(rank)
70
+
71
+ train_dataset = TextAudioLoader(hps.data.training_files, hps.data)
72
+ train_sampler = DistributedBucketSampler(
73
+ train_dataset,
74
+ hps.train.batch_size,
75
+ [32,300,400,500,600,700,800,900,1000],
76
+ num_replicas=n_gpus,
77
+ rank=rank,
78
+ shuffle=True)
79
+ collate_fn = TextAudioCollate()
80
+ train_loader = DataLoader(train_dataset, num_workers=8, shuffle=False, pin_memory=True,
81
+ collate_fn=collate_fn, batch_sampler=train_sampler)
82
+ if rank == 0:
83
+ eval_dataset = TextAudioLoader(hps.data.validation_files, hps.data)
84
+ eval_loader = DataLoader(eval_dataset, num_workers=8, shuffle=False,
85
+ batch_size=hps.train.batch_size, pin_memory=True,
86
+ drop_last=False, collate_fn=collate_fn)
87
+
88
+ net_g = SynthesizerTrn(
89
+ len(symbols),
90
+ hps.data.filter_length // 2 + 1,
91
+ hps.train.segment_size // hps.data.hop_length,
92
+ **hps.model).cuda(rank)
93
+ net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
94
+ optim_g = torch.optim.AdamW(
95
+ net_g.parameters(),
96
+ hps.train.learning_rate,
97
+ betas=hps.train.betas,
98
+ eps=hps.train.eps)
99
+ optim_d = torch.optim.AdamW(
100
+ net_d.parameters(),
101
+ hps.train.learning_rate,
102
+ betas=hps.train.betas,
103
+ eps=hps.train.eps)
104
+ net_g = DDP(net_g, device_ids=[rank])
105
+ net_d = DDP(net_d, device_ids=[rank])
106
+
107
+ try:
108
+ _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g)
109
+ _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d, optim_d)
110
+ global_step = (epoch_str - 1) * len(train_loader)
111
+ except:
112
+ epoch_str = 1
113
+ global_step = 0
114
+
115
+ scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str-2)
116
+ scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str-2)
117
+
118
+ scaler = GradScaler(enabled=hps.train.fp16_run)
119
+
120
+ for epoch in range(epoch_str, hps.train.epochs + 1):
121
+ if rank==0:
122
+ train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, eval_loader], logger, [writer, writer_eval])
123
+ else:
124
+ train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, None], None, None)
125
+ scheduler_g.step()
126
+ scheduler_d.step()
127
+
128
+
129
+ def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers):
130
+ net_g, net_d = nets
131
+ optim_g, optim_d = optims
132
+ scheduler_g, scheduler_d = schedulers
133
+ train_loader, eval_loader = loaders
134
+ if writers is not None:
135
+ writer, writer_eval = writers
136
+
137
+ train_loader.batch_sampler.set_epoch(epoch)
138
+ global global_step
139
+
140
+ net_g.train()
141
+ net_d.train()
142
+ for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, pitch) in enumerate(train_loader):
143
+ x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(rank, non_blocking=True)
144
+ spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(rank, non_blocking=True)
145
+ y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(rank, non_blocking=True)
146
+ pitch = pitch.cuda(rank, non_blocking=True)
147
+ with autocast(enabled=hps.train.fp16_run):
148
+ y_hat, l_length, attn, ids_slice, x_mask, z_mask,\
149
+ (z, z_p, m_p, logs_p, m_q, logs_q) = net_g(x, x_lengths, spec, spec_lengths, pitch)
150
+
151
+ mel = spec_to_mel_torch(
152
+ spec,
153
+ hps.data.filter_length,
154
+ hps.data.n_mel_channels,
155
+ hps.data.sampling_rate,
156
+ hps.data.mel_fmin,
157
+ hps.data.mel_fmax)
158
+ y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
159
+ y_hat_mel = mel_spectrogram_torch(
160
+ y_hat.squeeze(1),
161
+ hps.data.filter_length,
162
+ hps.data.n_mel_channels,
163
+ hps.data.sampling_rate,
164
+ hps.data.hop_length,
165
+ hps.data.win_length,
166
+ hps.data.mel_fmin,
167
+ hps.data.mel_fmax
168
+ )
169
+
170
+ y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice
171
+
172
+ # Discriminator
173
+ y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
174
+ with autocast(enabled=False):
175
+ loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
176
+ loss_disc_all = loss_disc
177
+ optim_d.zero_grad()
178
+ scaler.scale(loss_disc_all).backward()
179
+ scaler.unscale_(optim_d)
180
+ grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
181
+ scaler.step(optim_d)
182
+
183
+ with autocast(enabled=hps.train.fp16_run):
184
+ # Generator
185
+ y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
186
+ with autocast(enabled=False):
187
+ loss_dur = torch.sum(l_length.float())
188
+ loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
189
+ loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
190
+
191
+ loss_fm = feature_loss(fmap_r, fmap_g)
192
+ loss_gen, losses_gen = generator_loss(y_d_hat_g)
193
+ loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl
194
+ optim_g.zero_grad()
195
+ scaler.scale(loss_gen_all).backward()
196
+ scaler.unscale_(optim_g)
197
+ grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
198
+ scaler.step(optim_g)
199
+ scaler.update()
200
+
201
+ if rank==0:
202
+ if global_step % hps.train.log_interval == 0:
203
+ lr = optim_g.param_groups[0]['lr']
204
+ losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl]
205
+ logger.info('Train Epoch: {} [{:.0f}%]'.format(
206
+ epoch,
207
+ 100. * batch_idx / len(train_loader)))
208
+ logger.info([x.item() for x in losses] + [global_step, lr])
209
+
210
+ scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr, "grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g}
211
+ scalar_dict.update({"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/dur": loss_dur, "loss/g/kl": loss_kl})
212
+
213
+ scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)})
214
+ scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)})
215
+ scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)})
216
+ image_dict = {
217
+ "slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
218
+ "slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
219
+ "all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
220
+ "all/attn": utils.plot_alignment_to_numpy(attn[0,0].data.cpu().numpy())
221
+ }
222
+ utils.summarize(
223
+ writer=writer,
224
+ global_step=global_step,
225
+ images=image_dict,
226
+ scalars=scalar_dict)
227
+
228
+ if global_step % hps.train.eval_interval == 0:
229
+ evaluate(hps, net_g, eval_loader, writer_eval)
230
+ utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "G_{}.pth".format(global_step)))
231
+ utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "D_{}.pth".format(global_step)))
232
+ global_step += 1
233
+
234
+ if rank == 0:
235
+ logger.info('====> Epoch: {}'.format(epoch))
236
+
237
+
238
+ def evaluate(hps, generator, eval_loader, writer_eval):
239
+ generator.eval()
240
+ with torch.no_grad():
241
+ for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, pitch) in enumerate(eval_loader):
242
+ x, x_lengths = x.cuda(0), x_lengths.cuda(0)
243
+ spec, spec_lengths = spec.cuda(0), spec_lengths.cuda(0)
244
+ y, y_lengths = y.cuda(0), y_lengths.cuda(0)
245
+ pitch = pitch.cuda(0)
246
+ # remove else
247
+ x = x[:1]
248
+ x_lengths = x_lengths[:1]
249
+ spec = spec[:1]
250
+ spec_lengths = spec_lengths[:1]
251
+ y = y[:1]
252
+ y_lengths = y_lengths[:1]
253
+ break
254
+ y_hat, attn, mask, *_ = generator.module.infer(x, x_lengths, pitch, max_len=1000)
255
+ y_hat_lengths = mask.sum([1,2]).long() * hps.data.hop_length
256
+
257
+ mel = spec_to_mel_torch(
258
+ spec,
259
+ hps.data.filter_length,
260
+ hps.data.n_mel_channels,
261
+ hps.data.sampling_rate,
262
+ hps.data.mel_fmin,
263
+ hps.data.mel_fmax)
264
+ y_hat_mel = mel_spectrogram_torch(
265
+ y_hat.squeeze(1).float(),
266
+ hps.data.filter_length,
267
+ hps.data.n_mel_channels,
268
+ hps.data.sampling_rate,
269
+ hps.data.hop_length,
270
+ hps.data.win_length,
271
+ hps.data.mel_fmin,
272
+ hps.data.mel_fmax
273
+ )
274
+ image_dict = {
275
+ "gen/mel": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy())
276
+ }
277
+ audio_dict = {
278
+ "gen/audio": y_hat[0,:,:y_hat_lengths[0]]
279
+ }
280
+ if global_step == 0:
281
+ image_dict.update({"gt/mel": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())})
282
+ audio_dict.update({"gt/audio": y[0,:,:y_lengths[0]]})
283
+
284
+ utils.summarize(
285
+ writer=writer_eval,
286
+ global_step=global_step,
287
+ images=image_dict,
288
+ audios=audio_dict,
289
+ audio_sampling_rate=hps.data.sampling_rate
290
+ )
291
+ generator.train()
292
+
293
+
294
+ if __name__ == "__main__":
295
+ main()
train_ms.py ADDED
@@ -0,0 +1,296 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import argparse
4
+ import itertools
5
+ import math
6
+ import torch
7
+ from torch import nn, optim
8
+ from torch.nn import functional as F
9
+ from torch.utils.data import DataLoader
10
+ from torch.utils.tensorboard import SummaryWriter
11
+ import torch.multiprocessing as mp
12
+ import torch.distributed as dist
13
+ from torch.nn.parallel import DistributedDataParallel as DDP
14
+ from torch.cuda.amp import autocast, GradScaler
15
+
16
+ import commons
17
+ import utils
18
+ from data_utils import (
19
+ TextAudioSpeakerLoader,
20
+ TextAudioSpeakerCollate,
21
+ DistributedBucketSampler
22
+ )
23
+ from models import (
24
+ SynthesizerTrn,
25
+ MultiPeriodDiscriminator,
26
+ )
27
+ from losses import (
28
+ generator_loss,
29
+ discriminator_loss,
30
+ feature_loss,
31
+ kl_loss
32
+ )
33
+ from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
34
+ from text.symbols import symbols
35
+
36
+
37
+ torch.backends.cudnn.benchmark = True
38
+ global_step = 0
39
+
40
+
41
+ def main():
42
+ """Assume Single Node Multi GPUs Training Only"""
43
+ assert torch.cuda.is_available(), "CPU training is not allowed."
44
+
45
+ n_gpus = torch.cuda.device_count()
46
+ os.environ['MASTER_ADDR'] = 'localhost'
47
+ os.environ['MASTER_PORT'] = '25565'
48
+
49
+ hps = utils.get_hparams()
50
+ mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,))
51
+
52
+
53
+ def run(rank, n_gpus, hps):
54
+ global global_step
55
+ if rank == 0:
56
+ logger = utils.get_logger(hps.model_dir)
57
+ logger.info(hps)
58
+ utils.check_git_hash(hps.model_dir)
59
+ writer = SummaryWriter(log_dir=hps.model_dir)
60
+ writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
61
+
62
+ dist.init_process_group(backend='nccl', init_method='env://', world_size=n_gpus, rank=rank)
63
+ torch.manual_seed(hps.train.seed)
64
+ torch.cuda.set_device(rank)
65
+
66
+ train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps.data)
67
+ train_sampler = DistributedBucketSampler(
68
+ train_dataset,
69
+ hps.train.batch_size,
70
+ [32,300,400,500,600,700,800,900,1000],
71
+ num_replicas=n_gpus,
72
+ rank=rank,
73
+ shuffle=True)
74
+ collate_fn = TextAudioSpeakerCollate()
75
+ train_loader = DataLoader(train_dataset, num_workers=8, shuffle=False, pin_memory=True,
76
+ collate_fn=collate_fn, batch_sampler=train_sampler)
77
+ if rank == 0:
78
+ eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data)
79
+ eval_loader = DataLoader(eval_dataset, num_workers=8, shuffle=False,
80
+ batch_size=hps.train.batch_size, pin_memory=True,
81
+ drop_last=False, collate_fn=collate_fn)
82
+
83
+ net_g = SynthesizerTrn(
84
+ len(symbols),
85
+ hps.data.filter_length // 2 + 1,
86
+ hps.train.segment_size // hps.data.hop_length,
87
+ n_speakers=hps.data.n_speakers,
88
+ **hps.model).cuda(rank)
89
+ net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
90
+ optim_g = torch.optim.AdamW(
91
+ net_g.parameters(),
92
+ hps.train.learning_rate,
93
+ betas=hps.train.betas,
94
+ eps=hps.train.eps)
95
+ optim_d = torch.optim.AdamW(
96
+ net_d.parameters(),
97
+ hps.train.learning_rate,
98
+ betas=hps.train.betas,
99
+ eps=hps.train.eps)
100
+ net_g = DDP(net_g, device_ids=[rank])
101
+ net_d = DDP(net_d, device_ids=[rank])
102
+
103
+ try:
104
+ _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g)
105
+ _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d, optim_d)
106
+ global_step = (epoch_str - 1) * len(train_loader)
107
+ except:
108
+ epoch_str = 1
109
+ global_step = 0
110
+
111
+ scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str-2)
112
+ scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str-2)
113
+
114
+ scaler = GradScaler(enabled=hps.train.fp16_run)
115
+
116
+ for epoch in range(epoch_str, hps.train.epochs + 1):
117
+ if rank==0:
118
+ train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, eval_loader], logger, [writer, writer_eval])
119
+ else:
120
+ train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, None], None, None)
121
+ scheduler_g.step()
122
+ scheduler_d.step()
123
+
124
+
125
+ def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers):
126
+ net_g, net_d = nets
127
+ optim_g, optim_d = optims
128
+ scheduler_g, scheduler_d = schedulers
129
+ train_loader, eval_loader = loaders
130
+ if writers is not None:
131
+ writer, writer_eval = writers
132
+
133
+ train_loader.batch_sampler.set_epoch(epoch)
134
+ global global_step
135
+
136
+ net_g.train()
137
+ net_d.train()
138
+ for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, pitch, speakers) in enumerate(train_loader):
139
+ x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(rank, non_blocking=True)
140
+ spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(rank, non_blocking=True)
141
+ y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(rank, non_blocking=True)
142
+ speakers = speakers.cuda(rank, non_blocking=True)
143
+ pitch = pitch.cuda(rank, non_blocking=True)
144
+
145
+ with autocast(enabled=hps.train.fp16_run):
146
+ y_hat, l_length, l_pitch, attn, ids_slice, x_mask, z_mask,\
147
+ (z, z_p, m_p, logs_p, m_q, logs_q) = net_g(x, x_lengths, spec, spec_lengths, pitch, speakers)
148
+
149
+ mel = spec_to_mel_torch(
150
+ spec,
151
+ hps.data.filter_length,
152
+ hps.data.n_mel_channels,
153
+ hps.data.sampling_rate,
154
+ hps.data.mel_fmin,
155
+ hps.data.mel_fmax)
156
+ y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
157
+ y_hat_mel = mel_spectrogram_torch(
158
+ y_hat.squeeze(1),
159
+ hps.data.filter_length,
160
+ hps.data.n_mel_channels,
161
+ hps.data.sampling_rate,
162
+ hps.data.hop_length,
163
+ hps.data.win_length,
164
+ hps.data.mel_fmin,
165
+ hps.data.mel_fmax
166
+ )
167
+
168
+ y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice
169
+
170
+ # Discriminator
171
+ y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
172
+ with autocast(enabled=False):
173
+ loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
174
+ loss_disc_all = loss_disc
175
+ optim_d.zero_grad()
176
+ scaler.scale(loss_disc_all).backward()
177
+ scaler.unscale_(optim_d)
178
+ grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
179
+ scaler.step(optim_d)
180
+
181
+ with autocast(enabled=hps.train.fp16_run):
182
+ # Generator
183
+ y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
184
+ with autocast(enabled=False):
185
+ loss_dur = torch.sum(l_length.float())
186
+ loss_pitch = torch.sum(l_pitch.float())
187
+ loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
188
+ loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
189
+
190
+ loss_fm = feature_loss(fmap_r, fmap_g)
191
+ loss_gen, losses_gen = generator_loss(y_d_hat_g)
192
+ loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl + loss_pitch
193
+ optim_g.zero_grad()
194
+ scaler.scale(loss_gen_all).backward()
195
+ scaler.unscale_(optim_g)
196
+ grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
197
+ scaler.step(optim_g)
198
+ scaler.update()
199
+
200
+ if rank==0:
201
+ if global_step % hps.train.log_interval == 0:
202
+ lr = optim_g.param_groups[0]['lr']
203
+ losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl, loss_pitch]
204
+ logger.info('Train Epoch: {} [{:.0f}%]'.format(
205
+ epoch,
206
+ 100. * batch_idx / len(train_loader)))
207
+ logger.info([x.item() for x in losses] + [global_step, lr])
208
+
209
+ scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr, "grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g}
210
+ scalar_dict.update({"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/dur": loss_dur, "loss/g/kl": loss_kl, "loss/g/pitch": loss_pitch})
211
+
212
+ scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)})
213
+ scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)})
214
+ scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)})
215
+ image_dict = {
216
+ "slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
217
+ "slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
218
+ "all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
219
+ "all/attn": utils.plot_alignment_to_numpy(attn[0,0].data.cpu().numpy())
220
+ }
221
+ utils.summarize(
222
+ writer=writer,
223
+ global_step=global_step,
224
+ images=image_dict,
225
+ scalars=scalar_dict)
226
+
227
+ if global_step % hps.train.eval_interval == 0:
228
+ evaluate(hps, net_g, eval_loader, writer_eval)
229
+ utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "G_{}.pth".format(global_step)))
230
+ utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "D_{}.pth".format(global_step)))
231
+ global_step += 1
232
+
233
+ if rank == 0:
234
+ logger.info('====> Epoch: {}'.format(epoch))
235
+
236
+
237
+ def evaluate(hps, generator, eval_loader, writer_eval):
238
+ generator.eval()
239
+ with torch.no_grad():
240
+ for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, pitch, speakers) in enumerate(eval_loader):
241
+ x, x_lengths = x.cuda(0), x_lengths.cuda(0)
242
+ spec, spec_lengths = spec.cuda(0), spec_lengths.cuda(0)
243
+ y, y_lengths = y.cuda(0), y_lengths.cuda(0)
244
+ speakers = speakers.cuda(0)
245
+ pitch = pitch.cuda(0)
246
+ # remove else
247
+ x = x[:1]
248
+ x_lengths = x_lengths[:1]
249
+ spec = spec[:1]
250
+ spec_lengths = spec_lengths[:1]
251
+ y = y[:1]
252
+ y_lengths = y_lengths[:1]
253
+ speakers = speakers[:1]
254
+ break
255
+ y_hat, attn, mask, *_ = generator.module.infer(x, x_lengths, pitch, speakers, max_len=1000)
256
+ y_hat_lengths = mask.sum([1,2]).long() * hps.data.hop_length
257
+
258
+ mel = spec_to_mel_torch(
259
+ spec,
260
+ hps.data.filter_length,
261
+ hps.data.n_mel_channels,
262
+ hps.data.sampling_rate,
263
+ hps.data.mel_fmin,
264
+ hps.data.mel_fmax)
265
+ y_hat_mel = mel_spectrogram_torch(
266
+ y_hat.squeeze(1).float(),
267
+ hps.data.filter_length,
268
+ hps.data.n_mel_channels,
269
+ hps.data.sampling_rate,
270
+ hps.data.hop_length,
271
+ hps.data.win_length,
272
+ hps.data.mel_fmin,
273
+ hps.data.mel_fmax
274
+ )
275
+ image_dict = {
276
+ "gen/mel": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy())
277
+ }
278
+ audio_dict = {
279
+ "gen/audio": y_hat[0,:,:y_hat_lengths[0]]
280
+ }
281
+ if global_step == 0:
282
+ image_dict.update({"gt/mel": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())})
283
+ audio_dict.update({"gt/audio": y[0,:,:y_lengths[0]]})
284
+
285
+ utils.summarize(
286
+ writer=writer_eval,
287
+ global_step=global_step,
288
+ images=image_dict,
289
+ audios=audio_dict,
290
+ audio_sampling_rate=hps.data.sampling_rate
291
+ )
292
+ generator.train()
293
+
294
+
295
+ if __name__ == "__main__":
296
+ main()
transforms.py CHANGED
@@ -1,22 +1,25 @@
1
- import numpy as np
2
  import torch
3
- from torch.nn import functional as t_func
 
 
 
4
 
5
  DEFAULT_MIN_BIN_WIDTH = 1e-3
6
  DEFAULT_MIN_BIN_HEIGHT = 1e-3
7
  DEFAULT_MIN_DERIVATIVE = 1e-3
8
 
9
 
10
- def piecewise_rational_quadratic_transform(inputs,
11
  unnormalized_widths,
12
  unnormalized_heights,
13
  unnormalized_derivatives,
14
  inverse=False,
15
- tails=None,
16
  tail_bound=1.,
17
  min_bin_width=DEFAULT_MIN_BIN_WIDTH,
18
  min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
19
  min_derivative=DEFAULT_MIN_DERIVATIVE):
 
20
  if tails is None:
21
  spline_fn = rational_quadratic_spline
22
  spline_kwargs = {}
@@ -28,15 +31,15 @@ def piecewise_rational_quadratic_transform(inputs,
28
  }
29
 
30
  outputs, logabsdet = spline_fn(
31
- inputs=inputs,
32
- unnormalized_widths=unnormalized_widths,
33
- unnormalized_heights=unnormalized_heights,
34
- unnormalized_derivatives=unnormalized_derivatives,
35
- inverse=inverse,
36
- min_bin_width=min_bin_width,
37
- min_bin_height=min_bin_height,
38
- min_derivative=min_derivative,
39
- **spline_kwargs
40
  )
41
  return outputs, logabsdet
42
 
@@ -66,7 +69,7 @@ def unconstrained_rational_quadratic_spline(inputs,
66
  logabsdet = torch.zeros_like(inputs)
67
 
68
  if tails == 'linear':
69
- unnormalized_derivatives = t_func.pad(unnormalized_derivatives, pad=(1, 1))
70
  constant = np.log(np.exp(1 - min_derivative) - 1)
71
  unnormalized_derivatives[..., 0] = constant
72
  unnormalized_derivatives[..., -1] = constant
@@ -90,7 +93,6 @@ def unconstrained_rational_quadratic_spline(inputs,
90
 
91
  return outputs, logabsdet
92
 
93
-
94
  def rational_quadratic_spline(inputs,
95
  unnormalized_widths,
96
  unnormalized_heights,
@@ -110,21 +112,21 @@ def rational_quadratic_spline(inputs,
110
  if min_bin_height * num_bins > 1.0:
111
  raise ValueError('Minimal bin height too large for the number of bins')
112
 
113
- widths = t_func.softmax(unnormalized_widths, dim=-1)
114
  widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
115
  cumwidths = torch.cumsum(widths, dim=-1)
116
- cumwidths = t_func.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0)
117
  cumwidths = (right - left) * cumwidths + left
118
  cumwidths[..., 0] = left
119
  cumwidths[..., -1] = right
120
  widths = cumwidths[..., 1:] - cumwidths[..., :-1]
121
 
122
- derivatives = min_derivative + t_func.softplus(unnormalized_derivatives)
123
 
124
- heights = t_func.softmax(unnormalized_heights, dim=-1)
125
  heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
126
  cumheights = torch.cumsum(heights, dim=-1)
127
- cumheights = t_func.pad(cumheights, pad=(1, 0), mode='constant', value=0.0)
128
  cumheights = (top - bottom) * cumheights + bottom
129
  cumheights[..., 0] = bottom
130
  cumheights[..., -1] = top
 
 
1
  import torch
2
+ from torch.nn import functional as F
3
+
4
+ import numpy as np
5
+
6
 
7
  DEFAULT_MIN_BIN_WIDTH = 1e-3
8
  DEFAULT_MIN_BIN_HEIGHT = 1e-3
9
  DEFAULT_MIN_DERIVATIVE = 1e-3
10
 
11
 
12
+ def piecewise_rational_quadratic_transform(inputs,
13
  unnormalized_widths,
14
  unnormalized_heights,
15
  unnormalized_derivatives,
16
  inverse=False,
17
+ tails=None,
18
  tail_bound=1.,
19
  min_bin_width=DEFAULT_MIN_BIN_WIDTH,
20
  min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
21
  min_derivative=DEFAULT_MIN_DERIVATIVE):
22
+
23
  if tails is None:
24
  spline_fn = rational_quadratic_spline
25
  spline_kwargs = {}
 
31
  }
32
 
33
  outputs, logabsdet = spline_fn(
34
+ inputs=inputs,
35
+ unnormalized_widths=unnormalized_widths,
36
+ unnormalized_heights=unnormalized_heights,
37
+ unnormalized_derivatives=unnormalized_derivatives,
38
+ inverse=inverse,
39
+ min_bin_width=min_bin_width,
40
+ min_bin_height=min_bin_height,
41
+ min_derivative=min_derivative,
42
+ **spline_kwargs
43
  )
44
  return outputs, logabsdet
45
 
 
69
  logabsdet = torch.zeros_like(inputs)
70
 
71
  if tails == 'linear':
72
+ unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
73
  constant = np.log(np.exp(1 - min_derivative) - 1)
74
  unnormalized_derivatives[..., 0] = constant
75
  unnormalized_derivatives[..., -1] = constant
 
93
 
94
  return outputs, logabsdet
95
 
 
96
  def rational_quadratic_spline(inputs,
97
  unnormalized_widths,
98
  unnormalized_heights,
 
112
  if min_bin_height * num_bins > 1.0:
113
  raise ValueError('Minimal bin height too large for the number of bins')
114
 
115
+ widths = F.softmax(unnormalized_widths, dim=-1)
116
  widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
117
  cumwidths = torch.cumsum(widths, dim=-1)
118
+ cumwidths = F.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0)
119
  cumwidths = (right - left) * cumwidths + left
120
  cumwidths[..., 0] = left
121
  cumwidths[..., -1] = right
122
  widths = cumwidths[..., 1:] - cumwidths[..., :-1]
123
 
124
+ derivatives = min_derivative + F.softplus(unnormalized_derivatives)
125
 
126
+ heights = F.softmax(unnormalized_heights, dim=-1)
127
  heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
128
  cumheights = torch.cumsum(heights, dim=-1)
129
+ cumheights = F.pad(cumheights, pad=(1, 0), mode='constant', value=0.0)
130
  cumheights = (top - bottom) * cumheights + bottom
131
  cumheights[..., 0] = bottom
132
  cumheights[..., -1] = top
utils.py CHANGED
@@ -1,14 +1,13 @@
1
- import argparse
2
  import glob
3
- import json
 
4
  import logging
5
- import os
6
  import subprocess
7
- import sys
8
-
9
  import numpy as np
10
- import torch
11
  from scipy.io.wavfile import read
 
12
 
13
  MATPLOTLIB_FLAG = False
14
 
@@ -17,247 +16,246 @@ logger = logging
17
 
18
 
19
  def load_checkpoint(checkpoint_path, model, optimizer=None):
20
- assert os.path.isfile(checkpoint_path)
21
- checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
22
- iteration = checkpoint_dict['iteration']
23
- learning_rate = checkpoint_dict['learning_rate']
24
- if optimizer is not None:
25
- optimizer.load_state_dict(checkpoint_dict['optimizer'])
26
- # print(1111)
27
- saved_state_dict = checkpoint_dict['model']
28
- # print(1111)
29
-
30
- if hasattr(model, 'module'):
31
- state_dict = model.module.state_dict()
32
- else:
33
- state_dict = model.state_dict()
34
- new_state_dict = {}
35
- for k, v in state_dict.items():
36
- try:
37
- new_state_dict[k] = saved_state_dict[k]
38
- except Exception as e:
39
- logger.info(e)
40
- logger.info("%s is not in the checkpoint" % k)
41
- new_state_dict[k] = v
42
- if hasattr(model, 'module'):
43
- model.module.load_state_dict(new_state_dict)
44
- else:
45
- model.load_state_dict(new_state_dict)
46
- logger.info("Loaded checkpoint '{}' (iteration {})".format(
47
- checkpoint_path, iteration))
48
- return model, optimizer, learning_rate, iteration
49
 
50
 
51
  def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
52
- logger.info("Saving model and optimizer state at iteration {} to {}".format(
53
- iteration, checkpoint_path))
54
- if hasattr(model, 'module'):
55
- state_dict = model.module.state_dict()
56
- else:
57
- state_dict = model.state_dict()
58
- torch.save({'model': state_dict,
59
- 'iteration': iteration,
60
- 'optimizer': optimizer.state_dict(),
61
- 'learning_rate': learning_rate}, checkpoint_path)
62
 
63
 
64
  def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
65
- for k, v in scalars.items():
66
- writer.add_scalar(k, v, global_step)
67
- for k, v in histograms.items():
68
- writer.add_histogram(k, v, global_step)
69
- for k, v in images.items():
70
- writer.add_image(k, v, global_step, dataformats='HWC')
71
- for k, v in audios.items():
72
- writer.add_audio(k, v, global_step, audio_sampling_rate)
73
 
74
 
75
  def latest_checkpoint_path(dir_path, regex="G_*.pth"):
76
- f_list = glob.glob(os.path.join(dir_path, regex))
77
- f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
78
- x = f_list[-1]
79
- print(x)
80
- return x
81
 
82
 
83
  def plot_spectrogram_to_numpy(spectrogram):
84
- global MATPLOTLIB_FLAG
85
- if not MATPLOTLIB_FLAG:
86
- import matplotlib
87
- matplotlib.use("Agg")
88
- MATPLOTLIB_FLAG = True
89
- mpl_logger = logging.getLogger('matplotlib')
90
- mpl_logger.setLevel(logging.WARNING)
91
- import matplotlib.pylab as plt
92
- import numpy
93
-
94
- fig, ax = plt.subplots(figsize=(10, 2))
95
- im = ax.imshow(spectrogram, aspect="auto", origin="lower",
96
- interpolation='none')
97
- plt.colorbar(im, ax=ax)
98
- plt.xlabel("Frames")
99
- plt.ylabel("Channels")
100
- plt.tight_layout()
101
-
102
- fig.canvas.draw()
103
- data = numpy.fromstring(fig.canvas.tostring_rgb(), dtype=numpy.uint8, sep='')
104
- data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
105
- plt.close()
106
- return data
107
 
108
 
109
  def plot_alignment_to_numpy(alignment, info=None):
110
- global MATPLOTLIB_FLAG
111
- if not MATPLOTLIB_FLAG:
112
- import matplotlib
113
- matplotlib.use("Agg")
114
- MATPLOTLIB_FLAG = True
115
- mpl_logger = logging.getLogger('matplotlib')
116
- mpl_logger.setLevel(logging.WARNING)
117
- import matplotlib.pylab as plt
118
- import numpy
119
-
120
- fig, ax = plt.subplots(figsize=(6, 4))
121
- im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
122
- interpolation='none')
123
- fig.colorbar(im, ax=ax)
124
- xlabel = 'Decoder timestep'
125
- if info is not None:
126
- xlabel += '\n\n' + info
127
- plt.xlabel(xlabel)
128
- plt.ylabel('Encoder timestep')
129
- plt.tight_layout()
130
-
131
- fig.canvas.draw()
132
- data = numpy.fromstring(fig.canvas.tostring_rgb(), dtype=numpy.uint8, sep='')
133
- data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
134
- plt.close()
135
- return data
136
 
137
 
138
  def load_wav_to_torch(full_path):
139
- sampling_rate, data = read(full_path)
140
- return torch.FloatTensor(data.astype(np.float32)), sampling_rate
141
 
142
 
143
  def load_filepaths_and_text(filename, split="|"):
144
- with open(filename, encoding='utf-8') as f:
145
- filepaths_and_text = [line.strip().split(split) for line in f]
146
- return filepaths_and_text
147
 
148
 
149
  def get_hparams(init=True):
150
- parser = argparse.ArgumentParser()
151
- parser.add_argument('-c', '--config', type=str, default="./configs/base.json",
152
- help='JSON file for configuration')
153
- parser.add_argument('-m', '--model', type=str, required=True,
154
- help='Model name')
155
-
156
- args = parser.parse_args()
157
- model_dir = os.path.join("./logs", args.model)
158
-
159
- if not os.path.exists(model_dir):
160
- os.makedirs(model_dir)
161
-
162
- config_path = args.config
163
- config_save_path = os.path.join(model_dir, "config.json")
164
- if init:
165
- with open(config_path, "r") as f:
166
- data = f.read()
167
- with open(config_save_path, "w") as f:
168
- f.write(data)
169
- else:
170
- with open(config_save_path, "r") as f:
171
- data = f.read()
172
- config = json.loads(data)
173
-
174
- hparams = HParams(**config)
175
- hparams.model_dir = model_dir
176
- return hparams
177
 
178
 
179
  def get_hparams_from_dir(model_dir):
180
- config_save_path = os.path.join(model_dir, "config.json")
181
- with open(config_save_path, "r") as f:
182
- data = f.read()
183
- config = json.loads(data)
184
 
185
- hparams = HParams(**config)
186
- hparams.model_dir = model_dir
187
- return hparams
188
 
189
 
190
  def get_hparams_from_file(config_path):
191
- with open(config_path, "r", encoding="utf-8") as f:
192
- data = f.read()
193
- config = json.loads(data)
194
 
195
- hparams = HParams(**config)
196
- return hparams
197
 
198
 
199
  def check_git_hash(model_dir):
200
- source_dir = os.path.dirname(os.path.realpath(__file__))
201
- if not os.path.exists(os.path.join(source_dir, ".git")):
202
- logger.warning("{} is not a git repository, therefore hash value comparison will be ignored.".format(
203
- source_dir
204
- ))
205
- return
206
 
207
- cur_hash = subprocess.getoutput("git rev-parse HEAD")
208
 
209
- path = os.path.join(model_dir, "githash")
210
- if os.path.exists(path):
211
- saved_hash = open(path).read()
212
- if saved_hash != cur_hash:
213
- logger.warning("git hash values are different. {}(saved) != {}(current)".format(
214
- saved_hash[:8], cur_hash[:8]))
215
- else:
216
- open(path, "w").write(cur_hash)
217
 
218
 
219
  def get_logger(model_dir, filename="train.log"):
220
- global logger
221
- logger = logging.getLogger(os.path.basename(model_dir))
222
- logger.setLevel(logging.DEBUG)
223
-
224
- formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
225
- if not os.path.exists(model_dir):
226
- os.makedirs(model_dir)
227
- h = logging.FileHandler(os.path.join(model_dir, filename))
228
- h.setLevel(logging.DEBUG)
229
- h.setFormatter(formatter)
230
- logger.addHandler(h)
231
- return logger
232
-
233
-
234
- class HParams:
235
- def __init__(self, **kwargs):
236
- for k, v in kwargs.items():
237
- if type(v) == dict:
238
- v = HParams(**v)
239
- self[k] = v
240
-
241
- def keys(self):
242
- return self.__dict__.keys()
243
-
244
- def items(self):
245
- return self.__dict__.items()
246
-
247
- def values(self):
248
- return self.__dict__.values()
249
-
250
- def __len__(self):
251
- return len(self.__dict__)
252
-
253
- def __getitem__(self, key):
254
- return getattr(self, key)
255
-
256
- def __setitem__(self, key, value):
257
- return setattr(self, key, value)
258
-
259
- def __contains__(self, key):
260
- return key in self.__dict__
261
-
262
- def __repr__(self):
263
- return self.__dict__.__repr__()
 
1
+ import os
2
  import glob
3
+ import sys
4
+ import argparse
5
  import logging
6
+ import json
7
  import subprocess
 
 
8
  import numpy as np
 
9
  from scipy.io.wavfile import read
10
+ import torch
11
 
12
  MATPLOTLIB_FLAG = False
13
 
 
16
 
17
 
18
  def load_checkpoint(checkpoint_path, model, optimizer=None):
19
+ assert os.path.isfile(checkpoint_path)
20
+ checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
21
+ iteration = checkpoint_dict['iteration']
22
+ learning_rate = checkpoint_dict['learning_rate']
23
+ if optimizer is not None:
24
+ optimizer.load_state_dict(checkpoint_dict['optimizer'])
25
+ # print(1111)
26
+ saved_state_dict = checkpoint_dict['model']
27
+ # print(1111)
28
+
29
+ if hasattr(model, 'module'):
30
+ state_dict = model.module.state_dict()
31
+ else:
32
+ state_dict = model.state_dict()
33
+ new_state_dict= {}
34
+ for k, v in state_dict.items():
35
+ try:
36
+ new_state_dict[k] = saved_state_dict[k]
37
+ except:
38
+ logger.info("%s is not in the checkpoint" % k)
39
+ new_state_dict[k] = v
40
+ if hasattr(model, 'module'):
41
+ model.module.load_state_dict(new_state_dict)
42
+ else:
43
+ model.load_state_dict(new_state_dict)
44
+ logger.info("Loaded checkpoint '{}' (iteration {})" .format(
45
+ checkpoint_path, iteration))
46
+ return model, optimizer, learning_rate, iteration
 
47
 
48
 
49
  def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
50
+ logger.info("Saving model and optimizer state at iteration {} to {}".format(
51
+ iteration, checkpoint_path))
52
+ if hasattr(model, 'module'):
53
+ state_dict = model.module.state_dict()
54
+ else:
55
+ state_dict = model.state_dict()
56
+ torch.save({'model': state_dict,
57
+ 'iteration': iteration,
58
+ 'optimizer': optimizer.state_dict(),
59
+ 'learning_rate': learning_rate}, checkpoint_path)
60
 
61
 
62
  def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
63
+ for k, v in scalars.items():
64
+ writer.add_scalar(k, v, global_step)
65
+ for k, v in histograms.items():
66
+ writer.add_histogram(k, v, global_step)
67
+ for k, v in images.items():
68
+ writer.add_image(k, v, global_step, dataformats='HWC')
69
+ for k, v in audios.items():
70
+ writer.add_audio(k, v, global_step, audio_sampling_rate)
71
 
72
 
73
  def latest_checkpoint_path(dir_path, regex="G_*.pth"):
74
+ f_list = glob.glob(os.path.join(dir_path, regex))
75
+ f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
76
+ x = f_list[-1]
77
+ print(x)
78
+ return x
79
 
80
 
81
  def plot_spectrogram_to_numpy(spectrogram):
82
+ global MATPLOTLIB_FLAG
83
+ if not MATPLOTLIB_FLAG:
84
+ import matplotlib
85
+ matplotlib.use("Agg")
86
+ MATPLOTLIB_FLAG = True
87
+ mpl_logger = logging.getLogger('matplotlib')
88
+ mpl_logger.setLevel(logging.WARNING)
89
+ import matplotlib.pylab as plt
90
+ import numpy as np
91
+
92
+ fig, ax = plt.subplots(figsize=(10,2))
93
+ im = ax.imshow(spectrogram, aspect="auto", origin="lower",
94
+ interpolation='none')
95
+ plt.colorbar(im, ax=ax)
96
+ plt.xlabel("Frames")
97
+ plt.ylabel("Channels")
98
+ plt.tight_layout()
99
+
100
+ fig.canvas.draw()
101
+ data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
102
+ data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
103
+ plt.close()
104
+ return data
105
 
106
 
107
  def plot_alignment_to_numpy(alignment, info=None):
108
+ global MATPLOTLIB_FLAG
109
+ if not MATPLOTLIB_FLAG:
110
+ import matplotlib
111
+ matplotlib.use("Agg")
112
+ MATPLOTLIB_FLAG = True
113
+ mpl_logger = logging.getLogger('matplotlib')
114
+ mpl_logger.setLevel(logging.WARNING)
115
+ import matplotlib.pylab as plt
116
+ import numpy as np
117
+
118
+ fig, ax = plt.subplots(figsize=(6, 4))
119
+ im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
120
+ interpolation='none')
121
+ fig.colorbar(im, ax=ax)
122
+ xlabel = 'Decoder timestep'
123
+ if info is not None:
124
+ xlabel += '\n\n' + info
125
+ plt.xlabel(xlabel)
126
+ plt.ylabel('Encoder timestep')
127
+ plt.tight_layout()
128
+
129
+ fig.canvas.draw()
130
+ data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
131
+ data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
132
+ plt.close()
133
+ return data
134
 
135
 
136
  def load_wav_to_torch(full_path):
137
+ sampling_rate, data = read(full_path)
138
+ return torch.FloatTensor(data.astype(np.float32)), sampling_rate
139
 
140
 
141
  def load_filepaths_and_text(filename, split="|"):
142
+ with open(filename, encoding='utf-8') as f:
143
+ filepaths_and_text = [line.strip().split(split) for line in f]
144
+ return filepaths_and_text
145
 
146
 
147
  def get_hparams(init=True):
148
+ parser = argparse.ArgumentParser()
149
+ parser.add_argument('-c', '--config', type=str, default="./configs/base.json",
150
+ help='JSON file for configuration')
151
+ parser.add_argument('-m', '--model', type=str, required=True,
152
+ help='Model name')
153
+
154
+ args = parser.parse_args()
155
+ model_dir = os.path.join("./logs", args.model)
156
+
157
+ if not os.path.exists(model_dir):
158
+ os.makedirs(model_dir)
159
+
160
+ config_path = args.config
161
+ config_save_path = os.path.join(model_dir, "config.json")
162
+ if init:
163
+ with open(config_path, "r") as f:
164
+ data = f.read()
165
+ with open(config_save_path, "w") as f:
166
+ f.write(data)
167
+ else:
168
+ with open(config_save_path, "r") as f:
169
+ data = f.read()
170
+ config = json.loads(data)
171
+
172
+ hparams = HParams(**config)
173
+ hparams.model_dir = model_dir
174
+ return hparams
175
 
176
 
177
  def get_hparams_from_dir(model_dir):
178
+ config_save_path = os.path.join(model_dir, "config.json")
179
+ with open(config_save_path, "r") as f:
180
+ data = f.read()
181
+ config = json.loads(data)
182
 
183
+ hparams =HParams(**config)
184
+ hparams.model_dir = model_dir
185
+ return hparams
186
 
187
 
188
  def get_hparams_from_file(config_path):
189
+ with open(config_path, "r") as f:
190
+ data = f.read()
191
+ config = json.loads(data)
192
 
193
+ hparams =HParams(**config)
194
+ return hparams
195
 
196
 
197
  def check_git_hash(model_dir):
198
+ source_dir = os.path.dirname(os.path.realpath(__file__))
199
+ if not os.path.exists(os.path.join(source_dir, ".git")):
200
+ logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
201
+ source_dir
202
+ ))
203
+ return
204
 
205
+ cur_hash = subprocess.getoutput("git rev-parse HEAD")
206
 
207
+ path = os.path.join(model_dir, "githash")
208
+ if os.path.exists(path):
209
+ saved_hash = open(path).read()
210
+ if saved_hash != cur_hash:
211
+ logger.warn("git hash values are different. {}(saved) != {}(current)".format(
212
+ saved_hash[:8], cur_hash[:8]))
213
+ else:
214
+ open(path, "w").write(cur_hash)
215
 
216
 
217
  def get_logger(model_dir, filename="train.log"):
218
+ global logger
219
+ logger = logging.getLogger(os.path.basename(model_dir))
220
+ logger.setLevel(logging.DEBUG)
221
+
222
+ formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
223
+ if not os.path.exists(model_dir):
224
+ os.makedirs(model_dir)
225
+ h = logging.FileHandler(os.path.join(model_dir, filename))
226
+ h.setLevel(logging.DEBUG)
227
+ h.setFormatter(formatter)
228
+ logger.addHandler(h)
229
+ return logger
230
+
231
+
232
+ class HParams():
233
+ def __init__(self, **kwargs):
234
+ for k, v in kwargs.items():
235
+ if type(v) == dict:
236
+ v = HParams(**v)
237
+ self[k] = v
238
+
239
+ def keys(self):
240
+ return self.__dict__.keys()
241
+
242
+ def items(self):
243
+ return self.__dict__.items()
244
+
245
+ def values(self):
246
+ return self.__dict__.values()
247
+
248
+ def __len__(self):
249
+ return len(self.__dict__)
250
+
251
+ def __getitem__(self, key):
252
+ return getattr(self, key)
253
+
254
+ def __setitem__(self, key, value):
255
+ return setattr(self, key, value)
256
+
257
+ def __contains__(self, key):
258
+ return key in self.__dict__
259
+
260
+ def __repr__(self):
261
+ return self.__dict__.__repr__()