Spaces:
Running
Running
junzhaosun
commited on
Commit
·
21147ce
1
Parent(s):
3bb42a7
fixed bugs
Browse files- app.py +50 -4
- requirements.txt +3 -0
app.py
CHANGED
@@ -1,6 +1,50 @@
|
|
1 |
#!/usr/local/bin/python3
|
2 |
#-*- coding:utf-8 -*-
|
3 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
title = "OpenAI Whisper Large v2"
|
6 |
|
@@ -40,15 +84,17 @@ examples = [
|
|
40 |
["examples/see_in_eyes.wav", None],
|
41 |
]
|
42 |
|
43 |
-
gr.
|
44 |
-
|
45 |
inputs=[
|
46 |
gr.Audio(label="上传语音", source="upload", type="numpy"),
|
47 |
gr.Audio(label="录制语音", source="microphone", type="numpy"),
|
48 |
],
|
49 |
-
outputs=
|
|
|
|
|
50 |
title=title,
|
51 |
description=description,
|
52 |
article=article,
|
53 |
-
examples=examples
|
54 |
).launch()
|
|
|
1 |
#!/usr/local/bin/python3
|
2 |
#-*- coding:utf-8 -*-
|
3 |
import gradio as gr
|
4 |
+
import librosa
|
5 |
+
import torch
|
6 |
+
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq
|
7 |
+
|
8 |
+
checkpoint = "openai/whisper-large-v2"
|
9 |
+
processor = AutoProcessor.from_pretrained(checkpoint)
|
10 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(checkpoint)
|
11 |
+
|
12 |
+
|
13 |
+
def process_audio(sampling_rate, waveform):
|
14 |
+
# convert from int16 to floating point
|
15 |
+
waveform = waveform / 32678.0
|
16 |
+
|
17 |
+
# convert to mono if stereo
|
18 |
+
if len(waveform.shape) > 1:
|
19 |
+
waveform = librosa.to_mono(waveform.T)
|
20 |
+
|
21 |
+
# resample to 16 kHz if necessary
|
22 |
+
if sampling_rate != 16000:
|
23 |
+
waveform = librosa.resample(waveform, orig_sr=sampling_rate, target_sr=16000)
|
24 |
+
|
25 |
+
# limit to 30 seconds
|
26 |
+
waveform = waveform[:16000*30]
|
27 |
+
|
28 |
+
# make PyTorch tensor
|
29 |
+
waveform = torch.tensor(waveform)
|
30 |
+
return waveform
|
31 |
+
|
32 |
+
|
33 |
+
def predict(audio, mic_audio=None):
|
34 |
+
# audio = tuple (sample_rate, frames) or (sample_rate, (frames, channels))
|
35 |
+
if mic_audio is not None:
|
36 |
+
sampling_rate, waveform = mic_audio
|
37 |
+
elif audio is not None:
|
38 |
+
sampling_rate, waveform = audio
|
39 |
+
else:
|
40 |
+
return "(please provide audio)"
|
41 |
+
|
42 |
+
waveform = process_audio(sampling_rate, waveform)
|
43 |
+
inputs = processor(audio=waveform, sampling_rate=16000, return_tensors="pt")
|
44 |
+
predicted_ids = model.generate(**inputs, max_length=400)
|
45 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
46 |
+
return transcription[0]
|
47 |
+
|
48 |
|
49 |
title = "OpenAI Whisper Large v2"
|
50 |
|
|
|
84 |
["examples/see_in_eyes.wav", None],
|
85 |
]
|
86 |
|
87 |
+
gr.Interface(
|
88 |
+
fn=predict,
|
89 |
inputs=[
|
90 |
gr.Audio(label="上传语音", source="upload", type="numpy"),
|
91 |
gr.Audio(label="录制语音", source="microphone", type="numpy"),
|
92 |
],
|
93 |
+
outputs=[
|
94 |
+
gr.Text(label="识别出的文字"),
|
95 |
+
],
|
96 |
title=title,
|
97 |
description=description,
|
98 |
article=article,
|
99 |
+
examples=examples,
|
100 |
).launch()
|
requirements.txt
CHANGED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
git+https://github.com/huggingface/transformers.git
|
2 |
+
torch
|
3 |
+
librosa
|