|
import gradio as gr |
|
import numpy as np |
|
import imageio |
|
|
|
import tensorflow as tf |
|
from tensorflow import keras |
|
|
|
from utils import TubeMaskingGenerator |
|
from utils import read_video, frame_sampling, denormalize, reconstrunction |
|
from utils import IMAGENET_MEAN, IMAGENET_STD, num_frames, patch_size, input_size |
|
from labels import K400_label_map, SSv2_label_map, UCF_label_map |
|
|
|
|
|
MODELS = { |
|
'K400': [ |
|
'innat/videomae/TFVideoMAE_S_K400_16x224_FT', |
|
'innat/videomae/TFVideoMAE_S_K400_16x224_PT' |
|
], |
|
'SSv2': [], |
|
'UCF' : [] |
|
} |
|
|
|
|
|
def tube_mask_generator(): |
|
window_size = ( |
|
num_frames // 2, |
|
input_size // patch_size[0], |
|
input_size // patch_size[1] |
|
) |
|
tube_mask = TubeMaskingGenerator( |
|
input_size=window_size, |
|
mask_ratio=0.70 |
|
) |
|
make_bool = tube_mask() |
|
bool_masked_pos_tf = tf.constant(make_bool, dtype=tf.int32) |
|
bool_masked_pos_tf = tf.expand_dims(bool_masked_pos_tf, axis=0) |
|
bool_masked_pos_tf = tf.cast(bool_masked_pos_tf, tf.bool) |
|
return bool_masked_pos_tf |
|
|
|
|
|
def video_to_gif(video_array, gif_filename): |
|
imageio.mimsave( |
|
gif_filename, video_array, duration=100 |
|
) |
|
|
|
|
|
def get_model(data_type): |
|
ft_model = keras.models.load_model(MODELS[data_type][0]) |
|
pt_model = keras.models.load_model(MODELS[data_type][1]) |
|
label_map = {v: k for k, v in K400_label_map.items()} |
|
return ft_model, pt_model, label_map |
|
|
|
|
|
def inference(video_file, dataset_type): |
|
container = read_video(video_file) |
|
frames = frame_sampling(container, num_frames=num_frames) |
|
bool_masked_pos_tf = tube_mask_generator() |
|
ft_model, pt_model, label_map = get_model(dataset_type) |
|
ft_model.trainable = False |
|
pt_model.trainable = False |
|
|
|
|
|
outputs_ft = ft_model(frames[None, ...], training=False) |
|
probabilities = tf.nn.softmax(outputs_ft).numpy().squeeze(0) |
|
confidences = { |
|
label_map[i]: float(probabilities[i]) for i in np.argsort(probabilities)[::-1] |
|
} |
|
|
|
|
|
outputs_pt = pt_model(frames[None, ...], bool_masked_pos_tf, training=False) |
|
reconstruct_output, mask = reconstrunction( |
|
frames[None, ...], bool_masked_pos_tf, outputs_pt |
|
) |
|
|
|
input_frame = denormalize(frames) |
|
input_mask = denormalize(mask[0] * frames) |
|
output_frame = denormalize(reconstruct_output) |
|
|
|
frames = [] |
|
for frame_a, frame_b, frame_c in zip(input_frame, input_mask, output_frame): |
|
combined_frame = np.hstack([frame_a, frame_b, frame_c]) |
|
frames.append(combined_frame) |
|
|
|
combined_gif = 'combined.gif' |
|
imageio.mimsave(combined_gif, frames, duration=300, loop=0) |
|
return confidences, combined_gif |
|
|
|
|
|
gr.Interface( |
|
fn=inference, |
|
inputs=[ |
|
gr.Video(type="file"), |
|
gr.Radio( |
|
['K400', 'SSv2', 'UCF'], |
|
label='Dataset', value='K400' |
|
), |
|
], |
|
outputs=[ |
|
gr.Label(num_top_classes=3, label='confidence scores'), |
|
gr.Image(type="filepath", label='reconstructed masked autoencoder') |
|
], |
|
examples=[ |
|
["examples/k400.mp4"], |
|
["examples/k400.mp4"], |
|
["examples/k400.mp4"], |
|
], |
|
title="VideoMAE", |
|
).launch() |