|
from sentence_transformers import SentenceTransformer |
|
import pinecone |
|
import streamlit as st |
|
from langchain_community.vectorstores import Qdrant |
|
from qdrant_client import QdrantClient |
|
model = SentenceTransformer('all-MiniLM-L6-v2') |
|
|
|
|
|
|
|
|
|
import os |
|
|
|
|
|
api_key_qdrant = os.environ['QDRANT_API_KEY'] |
|
url_qdrant = os.environ['QDRANT_URL'] |
|
|
|
qdrant_client = QdrantClient( |
|
url=url_qdrant, |
|
api_key=api_key_qdrant, |
|
) |
|
|
|
|
|
collection_name = "dslogic" |
|
def find_match(input): |
|
input_em = model.encode(input).tolist() |
|
results = qdrant_client.search(collection_name=collection_name, query_vector=input_em, limit=2, with_payload=True) |
|
return "\n".join(point.payload['page_content'] for point in results) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_conversation_string(): |
|
conversation_string = "" |
|
for i in range(len(st.session_state['responses'])-1): |
|
|
|
conversation_string += "Human: "+st.session_state['requests'][i] + "\n" |
|
conversation_string += "Bot: "+ st.session_state['responses'][i+1] + "\n" |
|
return conversation_string |