Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,6 +9,7 @@ g_model = AutoModelForCausalLM.from_pretrained("google/gemma-2-2b")
|
|
9 |
|
10 |
def Sentence_Commpletion(model_name, input_text):
|
11 |
|
|
|
12 |
if model_name == "Bloom":
|
13 |
tokenizer, model = b_tokenizer, b_model
|
14 |
elif model_name == "Gemma":
|
@@ -16,10 +17,10 @@ def Sentence_Commpletion(model_name, input_text):
|
|
16 |
|
17 |
|
18 |
|
19 |
-
|
20 |
-
|
21 |
|
22 |
-
|
23 |
|
24 |
|
25 |
interface = gr.Interface(
|
@@ -27,10 +28,7 @@ fn=Sentence_Commpletion,
|
|
27 |
inputs=[gr.Radio(["Bloom", "Gemma"], label="Choose model"),
|
28 |
|
29 |
gr.Textbox(placeholder="Enter sentece"),],
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
)
|
34 |
-
|
35 |
|
36 |
interface.launch()
|
|
|
9 |
|
10 |
def Sentence_Commpletion(model_name, input_text):
|
11 |
|
12 |
+
|
13 |
if model_name == "Bloom":
|
14 |
tokenizer, model = b_tokenizer, b_model
|
15 |
elif model_name == "Gemma":
|
|
|
17 |
|
18 |
|
19 |
|
20 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
21 |
+
outputs = model.generate(inputs.input_ids, max_length=50, num_return_sequences=1)
|
22 |
|
23 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
24 |
|
25 |
|
26 |
interface = gr.Interface(
|
|
|
28 |
inputs=[gr.Radio(["Bloom", "Gemma"], label="Choose model"),
|
29 |
|
30 |
gr.Textbox(placeholder="Enter sentece"),],
|
31 |
+
outputs="text",
|
32 |
+
title="Bloom vs Gemma Sentence completion",)
|
|
|
|
|
|
|
33 |
|
34 |
interface.launch()
|