injilashah commited on
Commit
340ab8d
·
verified ·
1 Parent(s): 89b4749

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -8
app.py CHANGED
@@ -2,26 +2,27 @@ import os
2
  from transformers import AutoTokenizer, AutoModelForCausalLM
3
  import gradio as gr
4
  hf_token = os.getenv("HF_Token")
 
 
 
5
  b_tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-560m")#using small parameter version of model for faster inference on hf
6
  b_model = AutoModelForCausalLM.from_pretrained("bigscience/bloom-560m")
7
 
8
  g_tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b",use_auth_token = hf_token)#using small paramerter version of model for faster inference on hf
9
  g_model = AutoModelForCausalLM.from_pretrained("google/gemma-2-2b",use_auth_token = hf_token)
10
 
11
- def Sentence_Commpletion(model_name, input_text):
12
 
13
 
14
  if model_name == "Bloom":
15
  tokenizer, model = b_tokenizer, b_model
 
 
16
  elif model_name == "Gemma":
17
  tokenizer, model = g_tokenizer, g_model
18
-
19
-
20
-
21
- inputs = tokenizer(input_text, return_tensors="pt")
22
- outputs = model.generate(inputs.input_ids, max_length=50, num_return_sequences=1)
23
-
24
- return tokenizer.decode(outputs[0], skip_special_tokens=True)
25
 
26
 
27
  interface = gr.Interface(
 
2
  from transformers import AutoTokenizer, AutoModelForCausalLM
3
  import gradio as gr
4
  hf_token = os.getenv("HF_Token")
5
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
6
+
7
+
8
  b_tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-560m")#using small parameter version of model for faster inference on hf
9
  b_model = AutoModelForCausalLM.from_pretrained("bigscience/bloom-560m")
10
 
11
  g_tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b",use_auth_token = hf_token)#using small paramerter version of model for faster inference on hf
12
  g_model = AutoModelForCausalLM.from_pretrained("google/gemma-2-2b",use_auth_token = hf_token)
13
 
14
+ def Sentence_Commpletion(model_name, input):
15
 
16
 
17
  if model_name == "Bloom":
18
  tokenizer, model = b_tokenizer, b_model
19
+ inputid = tokenizer(input, return_tensors="pt")
20
+ outputs = model.generate(inputs.inputid, max_length=30, num_return_sequences=1)
21
  elif model_name == "Gemma":
22
  tokenizer, model = g_tokenizer, g_model
23
+ inputid = Tokenizer(input, return_tensors="pt")
24
+ outputs = Model.generate(**inputid, max_new_tokens=20)
25
+ return tokenizer.decode(outputs[0])
 
 
 
 
26
 
27
 
28
  interface = gr.Interface(