Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,26 +2,27 @@ import os
|
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import gradio as gr
|
4 |
hf_token = os.getenv("HF_Token")
|
|
|
|
|
|
|
5 |
b_tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-560m")#using small parameter version of model for faster inference on hf
|
6 |
b_model = AutoModelForCausalLM.from_pretrained("bigscience/bloom-560m")
|
7 |
|
8 |
g_tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b",use_auth_token = hf_token)#using small paramerter version of model for faster inference on hf
|
9 |
g_model = AutoModelForCausalLM.from_pretrained("google/gemma-2-2b",use_auth_token = hf_token)
|
10 |
|
11 |
-
def Sentence_Commpletion(model_name,
|
12 |
|
13 |
|
14 |
if model_name == "Bloom":
|
15 |
tokenizer, model = b_tokenizer, b_model
|
|
|
|
|
16 |
elif model_name == "Gemma":
|
17 |
tokenizer, model = g_tokenizer, g_model
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
inputs = tokenizer(input_text, return_tensors="pt")
|
22 |
-
outputs = model.generate(inputs.input_ids, max_length=50, num_return_sequences=1)
|
23 |
-
|
24 |
-
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
25 |
|
26 |
|
27 |
interface = gr.Interface(
|
|
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import gradio as gr
|
4 |
hf_token = os.getenv("HF_Token")
|
5 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
6 |
+
|
7 |
+
|
8 |
b_tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-560m")#using small parameter version of model for faster inference on hf
|
9 |
b_model = AutoModelForCausalLM.from_pretrained("bigscience/bloom-560m")
|
10 |
|
11 |
g_tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b",use_auth_token = hf_token)#using small paramerter version of model for faster inference on hf
|
12 |
g_model = AutoModelForCausalLM.from_pretrained("google/gemma-2-2b",use_auth_token = hf_token)
|
13 |
|
14 |
+
def Sentence_Commpletion(model_name, input):
|
15 |
|
16 |
|
17 |
if model_name == "Bloom":
|
18 |
tokenizer, model = b_tokenizer, b_model
|
19 |
+
inputid = tokenizer(input, return_tensors="pt")
|
20 |
+
outputs = model.generate(inputs.inputid, max_length=30, num_return_sequences=1)
|
21 |
elif model_name == "Gemma":
|
22 |
tokenizer, model = g_tokenizer, g_model
|
23 |
+
inputid = Tokenizer(input, return_tensors="pt")
|
24 |
+
outputs = Model.generate(**inputid, max_new_tokens=20)
|
25 |
+
return tokenizer.decode(outputs[0])
|
|
|
|
|
|
|
|
|
26 |
|
27 |
|
28 |
interface = gr.Interface(
|