dh-mc commited on
Commit
f3a6b9a
·
1 Parent(s): 927c472

SMU Library Chatbot

Browse files
Files changed (3) hide show
  1. .env.example +1 -1
  2. README.md +2 -2
  3. app.py +4 -2
.env.example CHANGED
@@ -86,7 +86,7 @@ CHUNCK_SIZE=1024
86
  CHUNK_OVERLAP=64
87
  SOURCE_PATH="data/pdfs/smu_lib_html/"
88
 
89
- # Index for SMU LibBot PDF files - chunk_size=1024 chunk_overlap=512
90
  FAISS_INDEX_PATH="data/smu_lib_index/"
91
 
92
  # telegram bot
 
86
  CHUNK_OVERLAP=64
87
  SOURCE_PATH="data/pdfs/smu_lib_html/"
88
 
89
+ # Index for SMU Library Chatbot PDF files - chunk_size=1024 chunk_overlap=512
90
  FAISS_INDEX_PATH="data/smu_lib_index/"
91
 
92
  # telegram bot
README.md CHANGED
@@ -1,5 +1,5 @@
1
  ---
2
- title: Chat with SMU LibBot
3
  emoji: 👀
4
  colorFrom: indigo
5
  colorTo: blue
@@ -87,7 +87,7 @@ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-
87
 
88
  ## Talk to Your Own PDF Files
89
 
90
- - The sample PDF books & documents are downloaded from the internet (for SMU LibBot) and [PCI DSS official website](https://www.pcisecuritystandards.org/document_library/?category=pcidss) and the corresponding embeddings are stored in folders `data/ai_books` and `data/pci_dss_v4` respectively, which allows you to run locally without any additional effort.
91
 
92
  - You can also put your own PDF files into any folder specified in `SOURCE_PDFS_PATH` and run the command below to generate embeddings which will be stored in folder `FAISS_INDEX_PATH` or `CHROMADB_INDEX_PATH`. If both `*_INDEX_PATH` env vars are set, `FAISS_INDEX_PATH` takes precedence. Make sure the folder specified by `*_INDEX_PATH` doesn't exist; other wise the command will simply try to load index from the folder and do a simple similarity search, as a way to verify if embeddings are generated and stored properly. Please note the HuggingFace Embedding model specified by `HF_EMBEDDINGS_MODEL_NAME` will be used to generate the embeddings.
93
 
 
1
  ---
2
+ title: Chat with SMU Library Chatbot
3
  emoji: 👀
4
  colorFrom: indigo
5
  colorTo: blue
 
87
 
88
  ## Talk to Your Own PDF Files
89
 
90
+ - The sample PDF books & documents are downloaded from the internet (for SMU Library Chatbot) and [PCI DSS official website](https://www.pcisecuritystandards.org/document_library/?category=pcidss) and the corresponding embeddings are stored in folders `data/ai_books` and `data/pci_dss_v4` respectively, which allows you to run locally without any additional effort.
91
 
92
  - You can also put your own PDF files into any folder specified in `SOURCE_PDFS_PATH` and run the command below to generate embeddings which will be stored in folder `FAISS_INDEX_PATH` or `CHROMADB_INDEX_PATH`. If both `*_INDEX_PATH` env vars are set, `FAISS_INDEX_PATH` takes precedence. Make sure the folder specified by `*_INDEX_PATH` doesn't exist; other wise the command will simply try to load index from the folder and do a simple similarity search, as a way to verify if embeddings are generated and stored properly. Please note the HuggingFace Embedding model specified by `HF_EMBEDDINGS_MODEL_NAME` will be used to generate the embeddings.
93
 
app.py CHANGED
@@ -44,7 +44,7 @@ if chat_with_llama_2:
44
  qa_chain = ChatChain(llm_loader)
45
  name = "Llama-2"
46
  else:
47
- name = "SMU LibBot"
48
 
49
  title = f"""<h1 align="left" style="min-width:200px; margin-top:0;"> Chat with {name} </h1>"""
50
 
@@ -216,5 +216,7 @@ with gr.Blocks(css=customCSS) as demo:
216
  api_name="reset",
217
  )
218
 
219
- demo.title = "Chat with SMU LibBot" if chat_with_llama_2 else "Chat with Llama-2"
 
 
220
  demo.queue(concurrency_count=CONCURRENT_COUNT).launch(share=share_gradio_app)
 
44
  qa_chain = ChatChain(llm_loader)
45
  name = "Llama-2"
46
  else:
47
+ name = "SMU Library Chatbot"
48
 
49
  title = f"""<h1 align="left" style="min-width:200px; margin-top:0;"> Chat with {name} </h1>"""
50
 
 
216
  api_name="reset",
217
  )
218
 
219
+ demo.title = (
220
+ "Chat with SMU Library Chatbot" if chat_with_llama_2 else "Chat with Llama-2"
221
+ )
222
  demo.queue(concurrency_count=CONCURRENT_COUNT).launch(share=share_gradio_app)