Spaces:
Build error
Build error
Qwen/Qwen2-7B-Instruct None False datasets/mac/mac.tsv results/mac-results.csv False 300 | |
loading env vars from: /Users/inflaton/code/engd/papers/rapget-translation/.env | |
workding dir: /Users/inflaton/code/engd/papers/rapget-translation | |
Python 3.11.9 | |
Name: torch | |
Version: 2.4.0 | |
Summary: Tensors and Dynamic neural networks in Python with strong GPU acceleration | |
Home-page: https://pytorch.org/ | |
Author: PyTorch Team | |
Author-email: packages@pytorch.org | |
License: BSD-3 | |
Location: /Users/inflaton/anaconda3/envs/rapget/lib/python3.11/site-packages | |
Requires: filelock, fsspec, jinja2, networkx, sympy, typing-extensions | |
Required-by: accelerate, peft, torchaudio, torchvision, trl | |
--- | |
Name: transformers | |
Version: 4.43.3 | |
Summary: State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow | |
Home-page: https://github.com/huggingface/transformers | |
Author: The Hugging Face team (past and future) with the help of all our contributors (https://github.com/huggingface/transformers/graphs/contributors) | |
Author-email: transformers@huggingface.co | |
License: Apache 2.0 License | |
Location: /Users/inflaton/anaconda3/envs/rapget/lib/python3.11/site-packages | |
Requires: filelock, huggingface-hub, numpy, packaging, pyyaml, regex, requests, safetensors, tokenizers, tqdm | |
Required-by: llamafactory, peft, trl | |
CPU times: user 8.97 ms, sys: 13.7 ms, total: 22.7 ms | |
Wall time: 1.91 s | |
MPS is available | |
loading existing data from: logs/openai-training-sample.jsonl | |
messages | |
0 [{'role': 'system', 'content': 'Marv is a fact... | |
1 [{'role': 'system', 'content': 'Marv is a fact... | |
2 [{'role': 'system', 'content': 'Marv is a fact... | |
FileObject(id='file-IokPHn4YWcniXL4wGnK4xVmn', bytes=3413094, created_at=1723269681, filename='openai-training.jsonl', object='file', purpose='fine-tune', status='processed', status_details=None) | |
FineTuningJob(id='ftjob-TcCo4KtDd3Gp5cnOVky2Rxhh', created_at=1723270136, error=Error(code=None, message=None, param=None), fine_tuned_model=None, finished_at=None, hyperparameters=Hyperparameters(n_epochs=6, batch_size='auto', learning_rate_multiplier='auto'), model='gpt-4o-mini-2024-07-18', object='fine_tuning.job', organization_id='org-RXHVnD8cqPvqTPdXgZ5rQdl3', result_files=[], seed=1046194933, status='validating_files', trained_tokens=None, training_file='file-IokPHn4YWcniXL4wGnK4xVmn', validation_file=None, estimated_finish=None, integrations=[], user_provided_suffix=None) | |
FineTuningJob(id='ftjob-TcCo4KtDd3Gp5cnOVky2Rxhh', created_at=1723270136, error=Error(code=None, message=None, param=None), fine_tuned_model='ft:gpt-4o-mini-2024-07-18:mastercard::9uaCEFTs', finished_at=1723272532, hyperparameters=Hyperparameters(n_epochs=6, batch_size=18, learning_rate_multiplier=1.8), model='gpt-4o-mini-2024-07-18', object='fine_tuning.job', organization_id='org-RXHVnD8cqPvqTPdXgZ5rQdl3', result_files=['file-aCppW0GWhhytwe4yKwymNUZl'], seed=1046194933, status='succeeded', trained_tokens=3640956, training_file='file-IokPHn4YWcniXL4wGnK4xVmn', validation_file=None, estimated_finish=None, integrations=[], user_provided_suffix=None) | |
Evaluating model: ft:gpt-4o-mini-2024-07-18:mastercard::9ufuULvy | |
loading train/test data files | |
DatasetDict({ | |
train: Dataset({ | |
features: ['chinese', 'english'], | |
num_rows: 4528 | |
}) | |
test: Dataset({ | |
features: ['chinese', 'english'], | |
num_rows: 1133 | |
}) | |
}) | |
-------------------------------------------------- | |
chinese: 老耿端起枪,眯缝起一只三角眼,一搂扳机响了枪,冰雹般的金麻雀劈哩啪啦往下落,铁砂子在柳枝间飞迸着,嚓嚓有声。 | |
-------------------------------------------------- | |
english: Old Geng picked up his shotgun, squinted, and pulled the trigger. Two sparrows crashed to the ground like hailstones as shotgun pellets tore noisily through the branches. | |
*** Evaluating with num_shots: 0 | |
100%|██████████| 1133/1133 [16:48<00:00, 1.12it/s] | |
gpt-4o-mini/epochs-01 metrics: {'meteor': 0.3785370331806402, 'sacrebleu': {'score': 12.052844230027103, 'counts': [12818, 4623, 2153, 1081], 'totals': [29097, 27964, 26850, 25740], 'precisions': [44.05265147609719, 16.53196967529681, 8.018621973929237, 4.1996891996892], 'bp': 0.9631327655852462, 'sys_len': 29097, 'ref_len': 30190}, 'bleu_scores': {'bleu': 0.12052844230027103, 'precisions': [0.44052651476097193, 0.1653196967529681, 0.08018621973929237, 0.041996891996891994], 'brevity_penalty': 0.9631327655852462, 'length_ratio': 0.9637959589267969, 'translation_length': 29097, 'reference_length': 30190}, 'rouge_scores': {'rouge1': 0.4244007719128182, 'rouge2': 0.17601540674784633, 'rougeL': 0.3693615986543504, 'rougeLsum': 0.3696442718692141}, 'accuracy': 0.00088261253309797, 'correct_ids': [77]} | |
Evaluating model: ft:gpt-4o-mini-2024-07-18:mastercard::9ug0Gt3w | |
loading train/test data files | |
DatasetDict({ | |
train: Dataset({ | |
features: ['chinese', 'english'], | |
num_rows: 4528 | |
}) | |
test: Dataset({ | |
features: ['chinese', 'english'], | |
num_rows: 1133 | |
}) | |
}) | |
-------------------------------------------------- | |
chinese: 老耿端起枪,眯缝起一只三角眼,一搂扳机响了枪,冰雹般的金麻雀劈哩啪啦往下落,铁砂子在柳枝间飞迸着,嚓嚓有声。 | |
-------------------------------------------------- | |
english: Old Geng picked up his shotgun, squinted, and pulled the trigger. Two sparrows crashed to the ground like hailstones as shotgun pellets tore noisily through the branches. | |
*** Evaluating with num_shots: 0 | |
100%|██████████| 1133/1133 [17:56<00:00, 1.05it/s] | |
gpt-4o-mini/epochs-02 metrics: {'meteor': 0.3785921332515917, 'sacrebleu': {'score': 12.033706874864837, 'counts': [12801, 4628, 2150, 1076], 'totals': [29076, 27943, 26830, 25722], 'precisions': [44.02600082542303, 16.562287513867517, 8.013417815877748, 4.183189487598165], 'bp': 0.9624112877781842, 'sys_len': 29076, 'ref_len': 30190}, 'bleu_scores': {'bleu': 0.12033706874864836, 'precisions': [0.4402600082542303, 0.16562287513867516, 0.08013417815877749, 0.04183189487598165], 'brevity_penalty': 0.9624112877781842, 'length_ratio': 0.9631003643590593, 'translation_length': 29076, 'reference_length': 30190}, 'rouge_scores': {'rouge1': 0.4235104923203792, 'rouge2': 0.1758318317686482, 'rougeL': 0.36922125683186846, 'rougeLsum': 0.3693808162149962}, 'accuracy': 0.00088261253309797, 'correct_ids': [77]} | |
Evaluating model: ft:gpt-4o-mini-2024-07-18:mastercard::9ug5PhpZ | |
loading train/test data files | |
DatasetDict({ | |
train: Dataset({ | |
features: ['chinese', 'english'], | |
num_rows: 4528 | |
}) | |
test: Dataset({ | |
features: ['chinese', 'english'], | |
num_rows: 1133 | |
}) | |
}) | |
-------------------------------------------------- | |
chinese: 老耿端起枪,眯缝起一只三角眼,一搂扳机响了枪,冰雹般的金麻雀劈哩啪啦往下落,铁砂子在柳枝间飞迸着,嚓嚓有声。 | |
-------------------------------------------------- | |
english: Old Geng picked up his shotgun, squinted, and pulled the trigger. Two sparrows crashed to the ground like hailstones as shotgun pellets tore noisily through the branches. | |
*** Evaluating with num_shots: 0 | |
100%|██████████| 1133/1133 [17:02<00:00, 1.11it/s] | |
gpt-4o-mini/epochs-03 metrics: {'meteor': 0.37736228106121694, 'sacrebleu': {'score': 11.933111335430906, 'counts': [12779, 4601, 2124, 1061], 'totals': [29096, 27963, 26848, 25737], 'precisions': [43.920126477866376, 16.453885491542394, 7.911203814064362, 4.122469596301046], 'bp': 0.9630984208616785, 'sys_len': 29096, 'ref_len': 30190}, 'bleu_scores': {'bleu': 0.11933111335430906, 'precisions': [0.4392012647786637, 0.16453885491542394, 0.07911203814064362, 0.041224695963010455], 'brevity_penalty': 0.9630984208616785, 'length_ratio': 0.9637628353759523, 'translation_length': 29096, 'reference_length': 30190}, 'rouge_scores': {'rouge1': 0.4235319934194407, 'rouge2': 0.17493309683581332, 'rougeL': 0.3685697120399035, 'rougeLsum': 0.3689298428303013}, 'accuracy': 0.00088261253309797, 'correct_ids': [77]} | |
Evaluating model: ft:gpt-4o-mini-2024-07-18:mastercard::9ugPThQI | |
loading train/test data files | |
DatasetDict({ | |
train: Dataset({ | |
features: ['chinese', 'english'], | |
num_rows: 4528 | |
}) | |
test: Dataset({ | |
features: ['chinese', 'english'], | |
num_rows: 1133 | |
}) | |
}) | |
-------------------------------------------------- | |
chinese: 老耿端起枪,眯缝起一只三角眼,一搂扳机响了枪,冰雹般的金麻雀劈哩啪啦往下落,铁砂子在柳枝间飞迸着,嚓嚓有声。 | |
-------------------------------------------------- | |
english: Old Geng picked up his shotgun, squinted, and pulled the trigger. Two sparrows crashed to the ground like hailstones as shotgun pellets tore noisily through the branches. | |
*** Evaluating with num_shots: 0 | |
100%|██████████| 1133/1133 [18:35<00:00, 1.02it/s] | |
gpt-4o-mini/epochs-04 metrics: {'meteor': 0.37818535038887346, 'sacrebleu': {'score': 11.933285526593995, 'counts': [12797, 4601, 2121, 1061], 'totals': [29110, 27977, 26861, 25749], 'precisions': [43.960838199931295, 16.445651785395146, 7.896206395889952, 4.120548370810517], 'bp': 0.9635791436286372, 'sys_len': 29110, 'ref_len': 30190}, 'bleu_scores': {'bleu': 0.11933285526593994, 'precisions': [0.43960838199931296, 0.16445651785395146, 0.07896206395889951, 0.041205483708105166], 'brevity_penalty': 0.9635791436286371, 'length_ratio': 0.9642265650877774, 'translation_length': 29110, 'reference_length': 30190}, 'rouge_scores': {'rouge1': 0.42372801674771476, 'rouge2': 0.17487358435014705, 'rougeL': 0.36931437347367646, 'rougeLsum': 0.36934766241132383}, 'accuracy': 0.00088261253309797, 'correct_ids': [77]} | |
Evaluating model: ft:gpt-4o-mini-2024-07-18:mastercard::9ugVLmcB | |
loading train/test data files | |
DatasetDict({ | |
train: Dataset({ | |
features: ['chinese', 'english'], | |
num_rows: 4528 | |
}) | |
test: Dataset({ | |
features: ['chinese', 'english'], | |
num_rows: 1133 | |
}) | |
}) | |
-------------------------------------------------- | |
chinese: 老耿端起枪,眯缝起一只三角眼,一搂扳机响了枪,冰雹般的金麻雀劈哩啪啦往下落,铁砂子在柳枝间飞迸着,嚓嚓有声。 | |
-------------------------------------------------- | |
english: Old Geng picked up his shotgun, squinted, and pulled the trigger. Two sparrows crashed to the ground like hailstones as shotgun pellets tore noisily through the branches. | |
*** Evaluating with num_shots: 0 | |
100%|██████████| 1133/1133 [15:47<00:00, 1.20it/s] | |
gpt-4o-mini/epochs-05 metrics: {'meteor': 0.3790673551140706, 'sacrebleu': {'score': 11.955698498650582, 'counts': [12808, 4609, 2126, 1064], 'totals': [29209, 28076, 26959, 25846], 'precisions': [43.849498442260945, 16.416156147599374, 7.88604918580066, 4.116691170780778], 'bp': 0.9669721941455759, 'sys_len': 29209, 'ref_len': 30190}, 'bleu_scores': {'bleu': 0.11955698498650584, 'precisions': [0.4384949844226095, 0.16416156147599373, 0.0788604918580066, 0.041166911707807785], 'brevity_penalty': 0.9669721941455759, 'length_ratio': 0.9675057966213978, 'translation_length': 29209, 'reference_length': 30190}, 'rouge_scores': {'rouge1': 0.42476082012412075, 'rouge2': 0.17559955520032905, 'rougeL': 0.3700113513462385, 'rougeLsum': 0.37012014201963733}, 'accuracy': 0.00088261253309797, 'correct_ids': [77]} | |
Evaluating model: ft:gpt-4o-mini-2024-07-18:mastercard::9uaCEFTs | |
loading train/test data files | |
DatasetDict({ | |
train: Dataset({ | |
features: ['chinese', 'english'], | |
num_rows: 4528 | |
}) | |
test: Dataset({ | |
features: ['chinese', 'english'], | |
num_rows: 1133 | |
}) | |
}) | |
-------------------------------------------------- | |
chinese: 老耿端起枪,眯缝起一只三角眼,一搂扳机响了枪,冰雹般的金麻雀劈哩啪啦往下落,铁砂子在柳枝间飞迸着,嚓嚓有声。 | |
-------------------------------------------------- | |
english: Old Geng picked up his shotgun, squinted, and pulled the trigger. Two sparrows crashed to the ground like hailstones as shotgun pellets tore noisily through the branches. | |
*** Evaluating with num_shots: 0 | |
100%|██████████| 1133/1133 [15:43<00:00, 1.20it/s] | |
gpt-4o-mini/epochs-06 metrics: {'meteor': 0.3792226866395673, 'sacrebleu': {'score': 11.982811850915233, 'counts': [12810, 4617, 2137, 1066], 'totals': [29116, 27983, 26868, 25757], 'precisions': [43.996428080780326, 16.499303148340065, 7.95369956825964, 4.138680746981403], 'bp': 0.9637850995333245, 'sys_len': 29116, 'ref_len': 30190}, 'bleu_scores': {'bleu': 0.11982811850915229, 'precisions': [0.43996428080780325, 0.16499303148340064, 0.0795369956825964, 0.04138680746981403], 'brevity_penalty': 0.9637850995333245, 'length_ratio': 0.9644253063928453, 'translation_length': 29116, 'reference_length': 30190}, 'rouge_scores': {'rouge1': 0.4251187202203103, 'rouge2': 0.17553224521896635, 'rougeL': 0.37003282393672954, 'rougeLsum': 0.370114181474168}, 'accuracy': 0.00088261253309797, 'correct_ids': [77]} |