dh-mc's picture
train with 4gpu
a2100ac
import os
import sys
import torch
from dotenv import find_dotenv, load_dotenv
found_dotenv = find_dotenv(".env")
if len(found_dotenv) == 0:
found_dotenv = find_dotenv(".env.example")
print(f"loading env vars from: {found_dotenv}")
load_dotenv(found_dotenv, override=False)
path = os.path.dirname(found_dotenv)
print(f"Adding {path} to sys.path")
sys.path.append(path)
from llm_toolkit.llm_utils import *
from llm_toolkit.translation_utils import *
device = check_gpu()
is_cuda = torch.cuda.is_available()
model_name = os.getenv("MODEL_NAME")
adapter_name_or_path = os.getenv("ADAPTER_NAME_OR_PATH")
load_in_4bit = os.getenv("LOAD_IN_4BIT") == "true"
data_path = os.getenv("DATA_PATH")
results_path = os.getenv("RESULTS_PATH")
batch_size = int(os.getenv("BATCH_SIZE", 1))
use_english_datasets = os.getenv("USE_ENGLISH_DATASETS") == "true"
max_new_tokens = int(os.getenv("MAX_NEW_TOKENS", 2048))
start_num_shots = int(os.getenv("START_NUM_SHOTS", 0))
print(
model_name,
adapter_name_or_path,
load_in_4bit,
data_path,
results_path,
use_english_datasets,
max_new_tokens,
batch_size,
)
if is_cuda:
torch.cuda.empty_cache()
gpu_stats = torch.cuda.get_device_properties(0)
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
print(f"(0) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
print(f"{start_gpu_memory} GB of memory reserved.")
torch.cuda.empty_cache()
model, tokenizer = load_model(
model_name, load_in_4bit=load_in_4bit, adapter_name_or_path=adapter_name_or_path
)
if is_cuda:
gpu_stats = torch.cuda.get_device_properties(0)
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
print(f"(2) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
print(f"{start_gpu_memory} GB of memory reserved.")
def on_num_shots_step_completed(model_name, dataset, predictions):
save_results(
model_name,
results_path,
dataset,
predictions,
)
metrics = calc_metrics(dataset["english"], predictions, debug=True)
print(f"{model_name} metrics: {metrics}")
if adapter_name_or_path is not None:
model_name += "/" + adapter_name_or_path.split("/")[-1]
def evaluate_model_with_num_shots(
model,
tokenizer,
model_name,
data_path,
start_num_shots=0,
range_num_shots=[0, 1, 3, 5, 10, 50],
batch_size=1,
max_new_tokens=2048,
device="cuda",
):
print(f"Evaluating model: {model_name} on {device}")
for num_shots in range_num_shots:
if num_shots < start_num_shots:
continue
print(f"*** Evaluating with num_shots: {num_shots}")
datasets = load_translation_dataset(data_path, tokenizer, num_shots=num_shots)
print_row_details(datasets["test"].to_pandas())
predictions = eval_model(
model,
tokenizer,
datasets["test"],
device=device,
batch_size=batch_size,
max_new_tokens=max_new_tokens,
)
model_name_with_rp = f"{model_name}/shots-{num_shots:02d}"
try:
on_num_shots_step_completed(
model_name_with_rp,
datasets["test"],
predictions,
)
except Exception as e:
print(e)
evaluate_model_with_num_shots(
model,
tokenizer,
model_name,
data_path,
batch_size=batch_size,
max_new_tokens=max_new_tokens,
device=device,
start_num_shots=start_num_shots,
)
if is_cuda:
gpu_stats = torch.cuda.get_device_properties(0)
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
print(f"(3) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
print(f"{start_gpu_memory} GB of memory reserved.")