Spaces:
Build error
Build error
import os | |
import re | |
import numpy as np | |
import torch | |
from transformers import ( | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
BitsAndBytesConfig, | |
TextStreamer, | |
) | |
from tqdm import tqdm | |
def get_template(model_name): | |
model_name = model_name.lower() | |
if "llama" in model_name: | |
return "llama3" | |
if "internlm" in model_name: | |
return "intern2" | |
if "glm" in model_name: | |
return "glm4" | |
return "chatml" | |
def load_tokenizer(model_name): | |
return AutoTokenizer.from_pretrained( | |
model_name, trust_remote_code=True, padding_side="left" | |
) | |
def load_model( | |
model_name, | |
dtype=torch.bfloat16, | |
load_in_4bit=False, | |
adapter_name_or_path=None, | |
using_llama_factory=False, | |
): | |
print(f"loading model: {model_name} with adapter: {adapter_name_or_path}") | |
if using_llama_factory: | |
from llamafactory.chat import ChatModel | |
template = get_template(model_name) | |
args = dict( | |
model_name_or_path=model_name, | |
adapter_name_or_path=adapter_name_or_path, # load the saved LoRA adapters | |
template=template, # same to the one in training | |
finetuning_type="lora", # same to the one in training | |
quantization_bit=4 if load_in_4bit else None, # load 4-bit quantized model | |
) | |
chat_model = ChatModel(args) | |
if os.getenv("RESIZE_TOKEN_EMBEDDINGS") == "true": | |
chat_model.engine.model.resize_token_embeddings( | |
len(chat_model.engine.tokenizer), pad_to_multiple_of=32 | |
) | |
return chat_model.engine.model, chat_model.engine.tokenizer | |
tokenizer = load_tokenizer(model_name) | |
bnb_config = BitsAndBytesConfig( | |
load_in_4bit=load_in_4bit, | |
bnb_4bit_quant_type="nf4", | |
bnb_4bit_use_double_quant=False, | |
bnb_4bit_compute_dtype=dtype, | |
) | |
model = ( | |
AutoModelForCausalLM.from_pretrained( | |
model_name, | |
quantization_config=bnb_config, | |
torch_dtype=dtype, | |
trust_remote_code=True, | |
device_map="auto", | |
) | |
if load_in_4bit | |
else AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype=dtype, | |
trust_remote_code=True, | |
device_map="auto", | |
) | |
) | |
if adapter_name_or_path: | |
adapter_name = model.load_adapter(adapter_name_or_path) | |
model.active_adapters = adapter_name | |
if not tokenizer.pad_token: | |
print("Adding pad token to tokenizer for model: ", model_name) | |
tokenizer.add_special_tokens({"pad_token": "<pad>"}) | |
model.resize_token_embeddings(len(tokenizer), pad_to_multiple_of=32) | |
model.generation_config.pad_token_id = tokenizer.pad_token_id | |
return model, tokenizer | |
def check_gpu(): | |
# torch.cuda.is_available() checks and returns a Boolean True if a GPU is available, else it'll return False | |
is_cuda = torch.cuda.is_available() | |
# If we have a GPU available, we'll set our device to GPU. We'll use this device variable later in our code. | |
if is_cuda: | |
device = torch.device("cuda") | |
print("CUDA is available, we have found ", torch.cuda.device_count(), " GPU(s)") | |
print(torch.cuda.get_device_name(0)) | |
print("CUDA version: " + torch.version.cuda) | |
elif torch.backends.mps.is_available(): | |
device = torch.device("mps") | |
print("MPS is available") | |
else: | |
device = torch.device("cpu") | |
print("GPU/MPS not available, CPU used") | |
return device | |
def test_model(model, tokenizer, prompt, device="cuda"): | |
inputs = tokenizer( | |
[prompt], | |
return_tensors="pt", | |
).to(device) | |
text_streamer = TextStreamer(tokenizer) | |
_ = model.generate( | |
**inputs, max_new_tokens=2048, streamer=text_streamer, use_cache=True | |
) | |
def extract_answer(text, debug=False): | |
if text: | |
# Remove the begin and end tokens | |
text = re.sub( | |
r".*?(assistant|\[/INST\]).+?\b", | |
"", | |
text, | |
flags=re.DOTALL | re.MULTILINE, | |
) | |
if debug: | |
print("--------\nstep 1:", text) | |
text = re.sub(r"<.+?>.*", "", text, flags=re.DOTALL | re.MULTILINE) | |
if debug: | |
print("--------\nstep 2:", text) | |
text = re.sub( | |
r".*?end_header_id\|>\n\n", "", text, flags=re.DOTALL | re.MULTILINE | |
) | |
if debug: | |
print("--------\nstep 3:", text) | |
text = text.split("。")[0].strip() | |
if debug: | |
print("--------\nstep 4:", text) | |
text = re.sub( | |
r"^Response:.+?\b", | |
"", | |
text, | |
flags=re.DOTALL | re.MULTILINE, | |
) | |
if debug: | |
print("--------\nstep 5:", text) | |
return text | |
def eval_model( | |
model, | |
tokenizer, | |
eval_dataset, | |
device="cuda", | |
max_new_tokens=2048, | |
repetition_penalty=1.0, | |
do_sample=True, | |
top_p=0.95, | |
top_k=0, # select from top 0 tokens (because zero, relies on top_p) | |
temperature=0.01, | |
batch_size=1, | |
): | |
total = len(eval_dataset) | |
predictions = [] | |
model.eval() | |
with torch.no_grad(): | |
for i in tqdm(range(0, total, batch_size)): # Iterate in batches | |
batch_end = min(i + batch_size, total) # Ensure not to exceed dataset | |
batch_prompts = eval_dataset["prompt"][i:batch_end] | |
inputs = tokenizer( | |
batch_prompts, | |
return_tensors="pt", | |
padding=True, # Ensure all inputs in the batch have the same length | |
).to(device) | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=max_new_tokens, | |
do_sample=do_sample, | |
temperature=temperature, | |
top_p=top_p, | |
top_k=top_k, | |
repetition_penalty=repetition_penalty, | |
use_cache=False, | |
) | |
outputs = outputs[:, inputs["input_ids"].shape[1] :] | |
decoded_output = tokenizer.batch_decode( | |
outputs, skip_special_tokens=True | |
) # Skip special tokens for clean output | |
if i == 0: | |
print("Batch output:", decoded_output) | |
predictions.extend(decoded_output) | |
return predictions | |
def evaluate_model_with_repetition_penalty( | |
model, | |
tokenizer, | |
model_name, | |
dataset, | |
on_repetition_penalty_step_completed, | |
start_repetition_penalty=1.0, | |
end_repetition_penalty=1.3, | |
step_repetition_penalty=0.02, | |
batch_size=1, | |
max_new_tokens=2048, | |
device="cuda", | |
): | |
print(f"Evaluating model: {model_name} on {device}") | |
for repetition_penalty in np.arange( | |
start_repetition_penalty, | |
end_repetition_penalty + step_repetition_penalty / 2, | |
step_repetition_penalty, | |
): | |
# round to 2 decimal places | |
repetition_penalty = round(repetition_penalty, 2) | |
print(f"*** Evaluating with repetition_penalty: {repetition_penalty}") | |
predictions = eval_model( | |
model, | |
tokenizer, | |
dataset, | |
device=device, | |
repetition_penalty=repetition_penalty, | |
batch_size=batch_size, | |
max_new_tokens=max_new_tokens, | |
) | |
model_name_with_rp = f"{model_name}/rpp-{repetition_penalty:.2f}" | |
try: | |
on_repetition_penalty_step_completed( | |
model_name_with_rp, | |
predictions, | |
) | |
except Exception as e: | |
print(e) | |
def save_model( | |
model, | |
tokenizer, | |
include_gguf=True, | |
include_merged=True, | |
publish=True, | |
): | |
try: | |
token = os.getenv("HF_TOKEN") or None | |
model_name = os.getenv("MODEL_NAME") | |
save_method = "lora" | |
quantization_method = "q5_k_m" | |
model_names = get_model_names( | |
model_name, save_method=save_method, quantization_method=quantization_method | |
) | |
model.save_pretrained(model_names["local"]) | |
tokenizer.save_pretrained(model_names["local"]) | |
if publish: | |
model.push_to_hub( | |
model_names["hub"], | |
token=token, | |
) | |
tokenizer.push_to_hub( | |
model_names["hub"], | |
token=token, | |
) | |
if include_merged: | |
model.save_pretrained_merged( | |
model_names["local"] + "-merged", tokenizer, save_method=save_method | |
) | |
if publish: | |
model.push_to_hub_merged( | |
model_names["hub"] + "-merged", | |
tokenizer, | |
save_method="lora", | |
token="", | |
) | |
if include_gguf: | |
model.save_pretrained_gguf( | |
model_names["local-gguf"], | |
tokenizer, | |
quantization_method=quantization_method, | |
) | |
if publish: | |
model.push_to_hub_gguf( | |
model_names["hub-gguf"], | |
tokenizer, | |
quantization_method=quantization_method, | |
token=token, | |
) | |
except Exception as e: | |
print(e) | |
def print_row_details(df, indices=[0]): | |
for index in indices: | |
for col in df.columns: | |
print("-" * 50) | |
print(f"{col}: {df[col].iloc[index]}") | |