fixed bug on metadata url handling
Browse files- app_modules/qa_chain.py +4 -2
- ingest.py +41 -5
app_modules/qa_chain.py
CHANGED
@@ -140,8 +140,10 @@ class QAChain:
|
|
140 |
|
141 |
if self.llm is None:
|
142 |
if self.llm_model_type == "openai":
|
|
|
|
|
143 |
self.llm = ChatOpenAI(
|
144 |
-
model_name=
|
145 |
streaming=True,
|
146 |
callbacks=callbacks,
|
147 |
verbose=True,
|
@@ -536,7 +538,7 @@ class QAChain:
|
|
536 |
result["answer"] = remove_extra_spaces(result["answer"])
|
537 |
|
538 |
base_url = os.environ.get("PDF_FILE_BASE_URL")
|
539 |
-
if base_url is not None:
|
540 |
documents = result["source_documents"]
|
541 |
for doc in documents:
|
542 |
source = doc.metadata["source"]
|
|
|
140 |
|
141 |
if self.llm is None:
|
142 |
if self.llm_model_type == "openai":
|
143 |
+
MODEL_NAME = os.environ.get("OPENAI_MODEL_NAME") or "gpt-4"
|
144 |
+
print(f" using model: {MODEL_NAME}")
|
145 |
self.llm = ChatOpenAI(
|
146 |
+
model_name=MODEL_NAME,
|
147 |
streaming=True,
|
148 |
callbacks=callbacks,
|
149 |
verbose=True,
|
|
|
538 |
result["answer"] = remove_extra_spaces(result["answer"])
|
539 |
|
540 |
base_url = os.environ.get("PDF_FILE_BASE_URL")
|
541 |
+
if base_url is not None and len(base_url) > 0:
|
542 |
documents = result["source_documents"]
|
543 |
for doc in documents:
|
544 |
source = doc.metadata["source"]
|
ingest.py
CHANGED
@@ -13,9 +13,17 @@ from langchain.vectorstores.faiss import FAISS
|
|
13 |
from app_modules.utils import *
|
14 |
|
15 |
|
16 |
-
def load_documents(source_pdfs_path) -> List:
|
17 |
loader = PyPDFDirectoryLoader(source_pdfs_path, silent_errors=True)
|
18 |
documents = loader.load()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
return documents
|
20 |
|
21 |
|
@@ -55,6 +63,7 @@ hf_embeddings_model_name = (
|
|
55 |
index_path = os.environ.get("FAISS_INDEX_PATH") or os.environ.get("CHROMADB_INDEX_PATH")
|
56 |
using_faiss = os.environ.get("FAISS_INDEX_PATH") is not None
|
57 |
source_pdfs_path = os.environ.get("SOURCE_PDFS_PATH")
|
|
|
58 |
chunk_size = os.environ.get("CHUNCK_SIZE")
|
59 |
chunk_overlap = os.environ.get("CHUNK_OVERLAP")
|
60 |
|
@@ -69,11 +78,29 @@ print(f"Completed in {end - start:.3f}s")
|
|
69 |
start = timer()
|
70 |
|
71 |
if not os.path.isdir(index_path):
|
72 |
-
print(
|
|
|
|
|
73 |
os.mkdir(index_path)
|
74 |
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
print(f"Splitting {len(sources)} PDF pages in to chunks ...")
|
78 |
|
79 |
chunks = split_chunks(
|
@@ -83,12 +110,21 @@ if not os.path.isdir(index_path):
|
|
83 |
|
84 |
index = generate_index(chunks, embeddings)
|
85 |
else:
|
86 |
-
print("The index persist directory is present. Loading index ...")
|
87 |
index = (
|
88 |
FAISS.load_local(index_path, embeddings)
|
89 |
if using_faiss
|
90 |
else Chroma(embedding_function=embeddings, persist_directory=index_path)
|
91 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
end = timer()
|
94 |
|
|
|
13 |
from app_modules.utils import *
|
14 |
|
15 |
|
16 |
+
def load_documents(source_pdfs_path, urls) -> List:
|
17 |
loader = PyPDFDirectoryLoader(source_pdfs_path, silent_errors=True)
|
18 |
documents = loader.load()
|
19 |
+
if urls is not None and len(urls) > 0:
|
20 |
+
for doc in documents:
|
21 |
+
source = doc.metadata["source"]
|
22 |
+
filename = source.split("/")[-1]
|
23 |
+
for url in urls:
|
24 |
+
if url.endswith(filename):
|
25 |
+
doc.metadata["url"] = url
|
26 |
+
break
|
27 |
return documents
|
28 |
|
29 |
|
|
|
63 |
index_path = os.environ.get("FAISS_INDEX_PATH") or os.environ.get("CHROMADB_INDEX_PATH")
|
64 |
using_faiss = os.environ.get("FAISS_INDEX_PATH") is not None
|
65 |
source_pdfs_path = os.environ.get("SOURCE_PDFS_PATH")
|
66 |
+
source_urls = os.environ.get("SOURCE_URLS")
|
67 |
chunk_size = os.environ.get("CHUNCK_SIZE")
|
68 |
chunk_overlap = os.environ.get("CHUNK_OVERLAP")
|
69 |
|
|
|
78 |
start = timer()
|
79 |
|
80 |
if not os.path.isdir(index_path):
|
81 |
+
print(
|
82 |
+
f"The index persist directory {index_path} is not present. Creating a new one."
|
83 |
+
)
|
84 |
os.mkdir(index_path)
|
85 |
|
86 |
+
if source_urls is not None:
|
87 |
+
# Open the file for reading
|
88 |
+
file = open(source_urls, "r")
|
89 |
+
|
90 |
+
# Read the contents of the file into a list of strings
|
91 |
+
lines = file.readlines()
|
92 |
+
|
93 |
+
# Close the file
|
94 |
+
file.close()
|
95 |
+
|
96 |
+
# Remove the newline characters from each string
|
97 |
+
source_urls = [line.strip() for line in lines]
|
98 |
+
|
99 |
+
print(
|
100 |
+
f"Loading {'' if source_urls is None else str(len(source_urls)) + ' '}PDF files from {source_pdfs_path}"
|
101 |
+
)
|
102 |
+
sources = load_documents(source_pdfs_path, source_urls)
|
103 |
+
|
104 |
print(f"Splitting {len(sources)} PDF pages in to chunks ...")
|
105 |
|
106 |
chunks = split_chunks(
|
|
|
110 |
|
111 |
index = generate_index(chunks, embeddings)
|
112 |
else:
|
113 |
+
print(f"The index persist directory {index_path} is present. Loading index ...")
|
114 |
index = (
|
115 |
FAISS.load_local(index_path, embeddings)
|
116 |
if using_faiss
|
117 |
else Chroma(embedding_function=embeddings, persist_directory=index_path)
|
118 |
)
|
119 |
+
query = "hi"
|
120 |
+
print(f"Load relevant documents for standalone question: {query}")
|
121 |
+
|
122 |
+
start2 = timer()
|
123 |
+
docs = index.as_retriever().get_relevant_documents(query)
|
124 |
+
end = timer()
|
125 |
+
|
126 |
+
print(f"Completed in {end - start2:.3f}s")
|
127 |
+
print(docs)
|
128 |
|
129 |
end = timer()
|
130 |
|