|
from langchain.chains import ConversationalRetrievalChain |
|
from langchain.chains.base import Chain |
|
from langchain.vectorstores.base import VectorStore |
|
|
|
from app_modules.llm_inference import LLMInference |
|
|
|
|
|
class QAChain(LLMInference): |
|
vectorstore: VectorStore |
|
|
|
def __init__(self, vectorstore, llm_loader): |
|
super().__init__(llm_loader) |
|
self.vectorstore = vectorstore |
|
|
|
def create_chain(self) -> Chain: |
|
qa = ConversationalRetrievalChain.from_llm( |
|
self.llm_loader.llm, |
|
self.vectorstore.as_retriever(search_kwargs=self.llm_loader.search_kwargs), |
|
max_tokens_limit=self.llm_loader.max_tokens_limit, |
|
return_source_documents=True, |
|
) |
|
|
|
return qa |
|
|