inflaton commited on
Commit
bbea107
·
1 Parent(s): e656f92

tuning mistral cn

Browse files
llama-factory/saves/Llama3.1-70B-Chinese-Chat/trainer_log.jsonl CHANGED
@@ -21,3 +21,27 @@
21
  {"current_steps": 95, "total_steps": 350, "loss": 0.2454, "learning_rate": 9.131193871579975e-05, "epoch": 0.5401563610518835, "percentage": 27.14, "elapsed_time": "4:29:36", "remaining_time": "12:03:41", "throughput": "0.00", "total_tokens": 0}
22
  {"current_steps": 100, "total_steps": 350, "loss": 0.3725, "learning_rate": 8.985662536114613e-05, "epoch": 0.5685856432125089, "percentage": 28.57, "elapsed_time": "4:40:59", "remaining_time": "11:42:29", "throughput": "0.00", "total_tokens": 0}
23
  {"current_steps": 105, "total_steps": 350, "loss": 0.2387, "learning_rate": 8.83022221559489e-05, "epoch": 0.5970149253731343, "percentage": 30.0, "elapsed_time": "4:52:18", "remaining_time": "11:22:04", "throughput": "0.00", "total_tokens": 0}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
  {"current_steps": 95, "total_steps": 350, "loss": 0.2454, "learning_rate": 9.131193871579975e-05, "epoch": 0.5401563610518835, "percentage": 27.14, "elapsed_time": "4:29:36", "remaining_time": "12:03:41", "throughput": "0.00", "total_tokens": 0}
22
  {"current_steps": 100, "total_steps": 350, "loss": 0.3725, "learning_rate": 8.985662536114613e-05, "epoch": 0.5685856432125089, "percentage": 28.57, "elapsed_time": "4:40:59", "remaining_time": "11:42:29", "throughput": "0.00", "total_tokens": 0}
23
  {"current_steps": 105, "total_steps": 350, "loss": 0.2387, "learning_rate": 8.83022221559489e-05, "epoch": 0.5970149253731343, "percentage": 30.0, "elapsed_time": "4:52:18", "remaining_time": "11:22:04", "throughput": "0.00", "total_tokens": 0}
24
+ {"current_steps": 105, "total_steps": 350, "eval_loss": 0.23953676223754883, "epoch": 0.5970149253731343, "percentage": 30.0, "elapsed_time": "5:18:59", "remaining_time": "12:24:19", "throughput": "0.00", "total_tokens": 0}
25
+ {"current_steps": 110, "total_steps": 350, "loss": 0.2324, "learning_rate": 8.665259359149132e-05, "epoch": 0.6254442075337597, "percentage": 31.43, "elapsed_time": "5:30:28", "remaining_time": "12:01:02", "throughput": "0.00", "total_tokens": 0}
26
+ {"current_steps": 115, "total_steps": 350, "loss": 0.2409, "learning_rate": 8.491184090430364e-05, "epoch": 0.6538734896943852, "percentage": 32.86, "elapsed_time": "5:41:50", "remaining_time": "11:38:31", "throughput": "0.00", "total_tokens": 0}
27
+ {"current_steps": 120, "total_steps": 350, "loss": 0.2512, "learning_rate": 8.308429187984297e-05, "epoch": 0.6823027718550106, "percentage": 34.29, "elapsed_time": "5:53:15", "remaining_time": "11:17:05", "throughput": "0.00", "total_tokens": 0}
28
+ {"current_steps": 125, "total_steps": 350, "loss": 0.2347, "learning_rate": 8.117449009293668e-05, "epoch": 0.7107320540156361, "percentage": 35.71, "elapsed_time": "6:04:36", "remaining_time": "10:56:17", "throughput": "0.00", "total_tokens": 0}
29
+ {"current_steps": 130, "total_steps": 350, "loss": 0.2357, "learning_rate": 7.91871836117395e-05, "epoch": 0.7391613361762616, "percentage": 37.14, "elapsed_time": "6:16:03", "remaining_time": "10:36:23", "throughput": "0.00", "total_tokens": 0}
30
+ {"current_steps": 135, "total_steps": 350, "loss": 0.2607, "learning_rate": 7.712731319328798e-05, "epoch": 0.767590618336887, "percentage": 38.57, "elapsed_time": "6:27:28", "remaining_time": "10:17:04", "throughput": "0.00", "total_tokens": 0}
31
+ {"current_steps": 140, "total_steps": 350, "loss": 0.2508, "learning_rate": 7.500000000000001e-05, "epoch": 0.7960199004975125, "percentage": 40.0, "elapsed_time": "6:38:57", "remaining_time": "9:58:25", "throughput": "0.00", "total_tokens": 0}
32
+ {"current_steps": 140, "total_steps": 350, "eval_loss": 0.22614409029483795, "epoch": 0.7960199004975125, "percentage": 40.0, "elapsed_time": "7:05:38", "remaining_time": "10:38:28", "throughput": "0.00", "total_tokens": 0}
33
+ {"current_steps": 145, "total_steps": 350, "loss": 0.2338, "learning_rate": 7.281053286765815e-05, "epoch": 0.8244491826581379, "percentage": 41.43, "elapsed_time": "7:17:07", "remaining_time": "10:18:00", "throughput": "0.00", "total_tokens": 0}
34
+ {"current_steps": 150, "total_steps": 350, "loss": 0.2547, "learning_rate": 7.056435515653059e-05, "epoch": 0.8528784648187633, "percentage": 42.86, "elapsed_time": "7:28:28", "remaining_time": "9:57:58", "throughput": "0.00", "total_tokens": 0}
35
+ {"current_steps": 155, "total_steps": 350, "loss": 0.2481, "learning_rate": 6.826705121831976e-05, "epoch": 0.8813077469793887, "percentage": 44.29, "elapsed_time": "7:39:56", "remaining_time": "9:38:38", "throughput": "0.00", "total_tokens": 0}
36
+ {"current_steps": 160, "total_steps": 350, "loss": 0.2431, "learning_rate": 6.592433251258423e-05, "epoch": 0.9097370291400142, "percentage": 45.71, "elapsed_time": "7:51:18", "remaining_time": "9:19:40", "throughput": "0.00", "total_tokens": 0}
37
+ {"current_steps": 165, "total_steps": 350, "loss": 0.228, "learning_rate": 6.354202340715026e-05, "epoch": 0.9381663113006397, "percentage": 47.14, "elapsed_time": "8:02:39", "remaining_time": "9:01:09", "throughput": "0.00", "total_tokens": 0}
38
+ {"current_steps": 170, "total_steps": 350, "loss": 0.2229, "learning_rate": 6.112604669781572e-05, "epoch": 0.9665955934612651, "percentage": 48.57, "elapsed_time": "8:14:06", "remaining_time": "8:43:09", "throughput": "0.00", "total_tokens": 0}
39
+ {"current_steps": 175, "total_steps": 350, "loss": 0.2356, "learning_rate": 5.868240888334653e-05, "epoch": 0.9950248756218906, "percentage": 50.0, "elapsed_time": "8:25:33", "remaining_time": "8:25:33", "throughput": "0.00", "total_tokens": 0}
40
+ {"current_steps": 175, "total_steps": 350, "eval_loss": 0.21728534996509552, "epoch": 0.9950248756218906, "percentage": 50.0, "elapsed_time": "8:52:16", "remaining_time": "8:52:16", "throughput": "0.00", "total_tokens": 0}
41
+ {"current_steps": 180, "total_steps": 350, "loss": 0.2172, "learning_rate": 5.621718523237427e-05, "epoch": 1.023454157782516, "percentage": 51.43, "elapsed_time": "9:03:32", "remaining_time": "8:33:21", "throughput": "0.00", "total_tokens": 0}
42
+ {"current_steps": 185, "total_steps": 350, "loss": 0.2047, "learning_rate": 5.373650467932122e-05, "epoch": 1.0518834399431414, "percentage": 52.86, "elapsed_time": "9:14:59", "remaining_time": "8:14:59", "throughput": "0.00", "total_tokens": 0}
43
+ {"current_steps": 190, "total_steps": 350, "loss": 0.2212, "learning_rate": 5.124653458690365e-05, "epoch": 1.080312722103767, "percentage": 54.29, "elapsed_time": "9:26:29", "remaining_time": "7:57:02", "throughput": "0.00", "total_tokens": 0}
44
+ {"current_steps": 195, "total_steps": 350, "loss": 0.211, "learning_rate": 4.875346541309637e-05, "epoch": 1.1087420042643923, "percentage": 55.71, "elapsed_time": "9:37:51", "remaining_time": "7:39:19", "throughput": "0.00", "total_tokens": 0}
45
+ {"current_steps": 200, "total_steps": 350, "loss": 0.2332, "learning_rate": 4.626349532067879e-05, "epoch": 1.1371712864250179, "percentage": 57.14, "elapsed_time": "9:49:13", "remaining_time": "7:21:54", "throughput": "0.00", "total_tokens": 0}
46
+ {"current_steps": 205, "total_steps": 350, "loss": 0.2216, "learning_rate": 4.378281476762576e-05, "epoch": 1.1656005685856432, "percentage": 58.57, "elapsed_time": "10:00:34", "remaining_time": "7:04:47", "throughput": "0.00", "total_tokens": 0}
47
+ {"current_steps": 210, "total_steps": 350, "loss": 0.2079, "learning_rate": 4.131759111665349e-05, "epoch": 1.1940298507462686, "percentage": 60.0, "elapsed_time": "10:11:55", "remaining_time": "6:47:56", "throughput": "0.00", "total_tokens": 0}
llm_toolkit/setup_lf.py CHANGED
@@ -56,5 +56,5 @@ file.close()
56
  y = yaml.safe_load(open(filename))
57
  print(f"{filename}:\n", json.dumps(y, indent=2))
58
 
59
- dataset = load_alpaca_data(data_path, using_p1=False)
60
- print_row_details(dataset, [0, -1])
 
56
  y = yaml.safe_load(open(filename))
57
  print(f"{filename}:\n", json.dumps(y, indent=2))
58
 
59
+ #dataset = load_alpaca_data(data_path, using_p1=False)
60
+ #print_row_details(dataset, [0, -1])
scripts/tune-lf_v2.sh CHANGED
@@ -9,7 +9,7 @@ export ORG_NAME=$1
9
  export MODEL_NAME=$2
10
  export CHAT_TEMPLATE=$3
11
  export DATA_PATH=../datasets/mgtv
12
- export YAML=config/mgtv_template_4bit.yaml
13
 
14
  export PYTORCH_CUDA_ALLOC_CONF="expandable_segments:True"
15
 
 
9
  export MODEL_NAME=$2
10
  export CHAT_TEMPLATE=$3
11
  export DATA_PATH=../datasets/mgtv
12
+ export YAML=config/mgtv_template.yaml
13
 
14
  export PYTORCH_CUDA_ALLOC_CONF="expandable_segments:True"
15
 
scripts/tune-lf_v2_4bit.sh ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/sh
2
+
3
+ BASEDIR=$(dirname "$0")
4
+ cd $BASEDIR/../llama-factory/
5
+ echo Current Directory:
6
+ pwd
7
+
8
+ export ORG_NAME=$1
9
+ export MODEL_NAME=$2
10
+ export CHAT_TEMPLATE=$3
11
+ export DATA_PATH=../datasets/mgtv
12
+ export YAML=config/mgtv_template_4bit.yaml
13
+
14
+ export PYTORCH_CUDA_ALLOC_CONF="expandable_segments:True"
15
+
16
+ python ../llm_toolkit/setup_lf.py
17
+ llamafactory-cli train config/models/$MODEL_NAME.yaml
scripts/tune-mgtv-4bit.sh CHANGED
@@ -19,7 +19,7 @@ export LOGICAL_REASONING_DATA_PATH=datasets/mgtv
19
 
20
  export LOGICAL_REASONING_RESULTS_PATH=results/mgtv-results_4bit.csv
21
 
22
- $BASEDIR/scripts/tune-lf_v2.sh Qwen Qwen2-72B-Instruct qwen
23
 
24
- $BASEDIR/scripts/tune-lf_v2.sh shenzhi-wang Llama3.1-70B-Chinese-Chat llama3
25
 
 
19
 
20
  export LOGICAL_REASONING_RESULTS_PATH=results/mgtv-results_4bit.csv
21
 
22
+ $BASEDIR/scripts/tune-lf_v2_4bit.sh Qwen Qwen2-72B-Instruct qwen
23
 
24
+ $BASEDIR/scripts/tune-lf_v2_4bit.sh shenzhi-wang Llama3.1-70B-Chinese-Chat llama3
25
 
scripts/tune-mgtv.sh CHANGED
@@ -1 +1 @@
1
- tune-mgtv-4bit.sh
 
1
+ tune-mgtv-bf16.sh