Spaces:
Build error
Build error
llama3 en
Browse files- .gitattributes +3 -0
- competition/00a_InternLM2.5_Llama3_GLM4_Results.ipynb +0 -0
- competition/00a_r2_InternLM2.5_Llama3_GLM4_Results.ipynb +0 -0
- competition/03_EDA_en.ipynb +0 -0
- competition/11b_Llama-3_8b_p1_r2_analysis.ipynb +0 -0
- competition/11c_Llama-3_8b_p2_r2_analysis.ipynb +0 -0
- llama-factory/config/llama3-8b_lora_sft_bf16-p1_en.yaml +46 -0
- llama-factory/config/llama3-8b_lora_sft_bf16-p2_en.yaml +46 -0
- llama-factory/data/alpaca_mgtv_p1_en.json +3 -0
- llama-factory/data/alpaca_mgtv_p2_en.json +3 -0
- llama-factory/data/dataset_info.json +2 -2
- llm_toolkit/logical_reasoning_utils.py +52 -26
- results/mgtv-llama3_p1_r2_full_metrics.csv +6 -0
- results/mgtv-llama3_p2_r2_full_metrics.csv +6 -0
- scripts/eval-mgtv-llama3_8b_en.sh +37 -0
- scripts/tune-mgtv-llama3_8b_en.sh +37 -0
- scripts/tune-mgtv.sh +1 -1
.gitattributes
CHANGED
@@ -64,3 +64,6 @@ results/mgtv-results_merged_model.csv filter=lfs diff=lfs merge=lfs -text
|
|
64 |
results/mgtv-results_p1_full_metrics.csv filter=lfs diff=lfs merge=lfs -text
|
65 |
results/mgtv-results_p2_full_metrics.csv filter=lfs diff=lfs merge=lfs -text
|
66 |
results/llama3-8b_lora_sft_bf16-p1.csv filter=lfs diff=lfs merge=lfs -text
|
|
|
67 |
filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
64 |
results/mgtv-results_p1_full_metrics.csv filter=lfs diff=lfs merge=lfs -text
|
65 |
results/mgtv-results_p2_full_metrics.csv filter=lfs diff=lfs merge=lfs -text
|
66 |
results/llama3-8b_lora_sft_bf16-p1.csv filter=lfs diff=lfs merge=lfs -text
|
67 |
+
llama-factory/data/Icon
|
68 |
filter=lfs diff=lfs merge=lfs -text
|
69 |
+
llama-factory/data/alpaca_mgtv_p1_en.json filter=lfs diff=lfs merge=lfs -text
|
70 |
+
llama-factory/data/alpaca_mgtv_p2_en.json filter=lfs diff=lfs merge=lfs -text
|
competition/00a_InternLM2.5_Llama3_GLM4_Results.ipynb
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
competition/00a_r2_InternLM2.5_Llama3_GLM4_Results.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
competition/03_EDA_en.ipynb
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
competition/11b_Llama-3_8b_p1_r2_analysis.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
competition/11c_Llama-3_8b_p2_r2_analysis.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
llama-factory/config/llama3-8b_lora_sft_bf16-p1_en.yaml
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### model
|
2 |
+
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
3 |
+
|
4 |
+
### method
|
5 |
+
stage: sft
|
6 |
+
do_train: true
|
7 |
+
finetuning_type: lora
|
8 |
+
lora_target: all
|
9 |
+
# quantization_bit: 4 # use 4-bit QLoRA
|
10 |
+
loraplus_lr_ratio: 16.0 # use LoRA+ with lambda=16.0
|
11 |
+
# use_unsloth: true # use UnslothAI's LoRA optimization for 2x faster training
|
12 |
+
upcast_layernorm: true
|
13 |
+
|
14 |
+
### dataset
|
15 |
+
dataset: alpaca_mgtv_p1_en
|
16 |
+
template: llama3
|
17 |
+
cutoff_len: 4096
|
18 |
+
max_samples: 25000
|
19 |
+
overwrite_cache: true
|
20 |
+
preprocessing_num_workers: 16
|
21 |
+
|
22 |
+
### output
|
23 |
+
output_dir: saves/llama3-8b/lora/sft_bf16_p1_full_en
|
24 |
+
logging_steps: 10
|
25 |
+
save_steps: 175
|
26 |
+
plot_loss: true
|
27 |
+
# overwrite_output_dir: true
|
28 |
+
|
29 |
+
### train
|
30 |
+
per_device_train_batch_size: 16
|
31 |
+
gradient_accumulation_steps: 8
|
32 |
+
learning_rate: 1.0e-4
|
33 |
+
num_train_epochs: 1.0
|
34 |
+
lr_scheduler_type: cosine
|
35 |
+
warmup_ratio: 0.1
|
36 |
+
bf16: true
|
37 |
+
ddp_timeout: 180000000
|
38 |
+
|
39 |
+
### eval
|
40 |
+
val_size: 0.1
|
41 |
+
per_device_eval_batch_size: 1
|
42 |
+
eval_strategy: steps
|
43 |
+
eval_steps: 175
|
44 |
+
|
45 |
+
report_to: wandb
|
46 |
+
run_name: llama3_8b_p1_en # optional
|
llama-factory/config/llama3-8b_lora_sft_bf16-p2_en.yaml
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### model
|
2 |
+
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
3 |
+
|
4 |
+
### method
|
5 |
+
stage: sft
|
6 |
+
do_train: true
|
7 |
+
finetuning_type: lora
|
8 |
+
lora_target: all
|
9 |
+
# quantization_bit: 4 # use 4-bit QLoRA
|
10 |
+
loraplus_lr_ratio: 16.0 # use LoRA+ with lambda=16.0
|
11 |
+
# use_unsloth: true # use UnslothAI's LoRA optimization for 2x faster training
|
12 |
+
upcast_layernorm: true
|
13 |
+
|
14 |
+
### dataset
|
15 |
+
dataset: alpaca_mgtv_p2_en
|
16 |
+
template: llama3
|
17 |
+
cutoff_len: 4096
|
18 |
+
max_samples: 25000
|
19 |
+
overwrite_cache: true
|
20 |
+
preprocessing_num_workers: 16
|
21 |
+
|
22 |
+
### output
|
23 |
+
output_dir: saves/llama3-8b/lora/sft_bf16_p2_full_en
|
24 |
+
logging_steps: 10
|
25 |
+
save_steps: 175
|
26 |
+
plot_loss: true
|
27 |
+
# overwrite_output_dir: true
|
28 |
+
|
29 |
+
### train
|
30 |
+
per_device_train_batch_size: 16
|
31 |
+
gradient_accumulation_steps: 8
|
32 |
+
learning_rate: 1.0e-4
|
33 |
+
num_train_epochs: 1.0
|
34 |
+
lr_scheduler_type: cosine
|
35 |
+
warmup_ratio: 0.1
|
36 |
+
bf16: true
|
37 |
+
ddp_timeout: 180000000
|
38 |
+
|
39 |
+
### eval
|
40 |
+
val_size: 0.1
|
41 |
+
per_device_eval_batch_size: 1
|
42 |
+
eval_strategy: steps
|
43 |
+
eval_steps: 175
|
44 |
+
|
45 |
+
report_to: wandb
|
46 |
+
run_name: llama3_8b_p2_en # optional
|
llama-factory/data/alpaca_mgtv_p1_en.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d88d2715925c53b13b1e393a1e5c1b0a62a98ddd273a4a6ae6dbbfd6ef96c32c
|
3 |
+
size 44594582
|
llama-factory/data/alpaca_mgtv_p2_en.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:89cd205feb846c67906926afdf1776ae05a210c6f1653a04e753f071f8506859
|
3 |
+
size 57644582
|
llama-factory/data/dataset_info.json
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f1f4455a35b493baea9718535166c71778ba14994522057129a99b3614b659aa
|
3 |
+
size 13894
|
llm_toolkit/logical_reasoning_utils.py
CHANGED
@@ -24,6 +24,22 @@ P1 = """你是一个逻辑游戏的主持人。游戏规则如下:
|
|
24 |
参与者提出的问题: {}
|
25 |
"""
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
P2 = """你是一个情景猜谜游戏的主持人。游戏规则如下:
|
28 |
|
29 |
1. 参与者会得到一个谜面,谜面会描述一个简单又难以理解的事件。
|
@@ -45,6 +61,34 @@ P2 = """你是一个情景猜谜游戏的主持人。游戏规则如下:
|
|
45 |
**参与者提出的问题:** {}
|
46 |
"""
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
def extract_answer(text, debug=False):
|
50 |
if text:
|
@@ -136,30 +180,7 @@ def load_logical_reasoning_dataset(
|
|
136 |
)
|
137 |
|
138 |
if tokenizer:
|
139 |
-
reasoning_prompt = (
|
140 |
-
(P1 if using_p1 else P2)
|
141 |
-
if chinese_prompt
|
142 |
-
else """You are the host of a situational guessing game. The rules of the game are as follows:
|
143 |
-
|
144 |
-
1. Participants will receive a riddle that describes a simple yet difficult to understand event.
|
145 |
-
2. The host knows the answer, which is the solution to the riddle.
|
146 |
-
3. Participants can ask any closed-ended questions to uncover the truth of the event.
|
147 |
-
4. For each question, the host will respond with one of the following five options based on the actual situation: Yes, No, Unimportant, Correct answer, or Incorrect questioning. The criteria for each response are as follows:
|
148 |
-
- If the riddle and answer can provide an answer to the question, respond with: Yes or No
|
149 |
-
- If the riddle and answer cannot directly or indirectly infer an answer to the question, respond with: Unimportant
|
150 |
-
- If the participant's question is not a closed-ended question or is difficult to understand, respond with: Incorrect questioning
|
151 |
-
- If the participant's question essentially reveals the truth of the answer, respond with: Correct answer
|
152 |
-
5. The response must not include any additional information, nor should any word be omitted from the options. For example, "No" cannot be abbreviated to "N".
|
153 |
-
|
154 |
-
Please strictly follow these rules when answering the participant's questions.
|
155 |
-
|
156 |
-
**Riddle:** {}
|
157 |
-
|
158 |
-
**Answer:** {}
|
159 |
-
|
160 |
-
**Participant's question:** {}
|
161 |
-
"""
|
162 |
-
)
|
163 |
|
164 |
def formatting_prompts_func(examples):
|
165 |
inputs = examples["text"]
|
@@ -234,17 +255,22 @@ def load_alpaca_data(data_path, using_p1=True, use_english_datasets=False):
|
|
234 |
else "llama-factory/data/alpaca_mgtv_p2.json"
|
235 |
)
|
236 |
|
|
|
|
|
|
|
237 |
if os.path.exists(alpaca_data_path):
|
238 |
print("loading existing data from:", alpaca_data_path)
|
239 |
data = pd.read_json(alpaca_data_path, orient="records", lines=False)
|
240 |
return data
|
241 |
|
242 |
print("loading new data from:", alpaca_data_path)
|
|
|
243 |
datasets = load_logical_reasoning_dataset(
|
244 |
-
data_path, chinese_prompt=
|
245 |
)
|
246 |
|
247 |
-
prompt_template =
|
|
|
248 |
df_train = datasets["train"].to_pandas()
|
249 |
df_train["instruction"] = df_train.apply(
|
250 |
lambda x: prompt_template.format(x["puzzle"], x["truth"], x["text"]), axis=1
|
|
|
24 |
参与者提出的问题: {}
|
25 |
"""
|
26 |
|
27 |
+
P1_en = """You are the host of a logic game. The rules of the game are as follows:
|
28 |
+
|
29 |
+
1. Participants will receive a puzzle.
|
30 |
+
2. Participants can ask questions to obtain clues and try to solve the puzzle.
|
31 |
+
3. For each question, the host will answer with one of the following five options based on the actual situation: Yes, No, Unimportant, Correct answer, or Incorrect questioning.
|
32 |
+
4. The answer cannot include any additional information, nor can any word in the options be omitted. For example, “No” cannot be shortened to “N”.
|
33 |
+
5. Participants need to infer and ultimately find the correct answer to the puzzle based on the responses.
|
34 |
+
|
35 |
+
Please strictly adhere to these rules when answering participants’ questions.
|
36 |
+
|
37 |
+
Puzzle: {}
|
38 |
+
|
39 |
+
Actual situation: {}
|
40 |
+
|
41 |
+
Question from participants: {}"""
|
42 |
+
|
43 |
P2 = """你是一个情景猜谜游戏的主持人。游戏规则如下:
|
44 |
|
45 |
1. 参与者会得到一个谜面,谜面会描述一个简单又难以理解的事件。
|
|
|
61 |
**参与者提出的问题:** {}
|
62 |
"""
|
63 |
|
64 |
+
P2_en = """You are the host of a situational guessing game. The rules of the game are as follows:
|
65 |
+
|
66 |
+
1. Participants will receive a riddle that describes a simple yet difficult to understand event.
|
67 |
+
2. The host knows the answer, which is the solution to the riddle.
|
68 |
+
3. Participants can ask any closed-ended questions to uncover the truth of the event.
|
69 |
+
4. For each question, the host will respond with one of the following five options based on the actual situation: Yes, No, Unimportant, Correct answer, or Incorrect questioning. The criteria for each response are as follows:
|
70 |
+
- If the riddle and answer can provide an answer to the question, respond with: Yes or No
|
71 |
+
- If the riddle and answer cannot directly or indirectly infer an answer to the question, respond with: Unimportant
|
72 |
+
- If the participant's question is not a closed-ended question or is difficult to understand, respond with: Incorrect questioning
|
73 |
+
- If the participant's question essentially reveals the truth of the answer, respond with: Correct answer
|
74 |
+
5. The response must not include any additional information, nor should any word be omitted from the options. For example, "No" cannot be abbreviated to "N".
|
75 |
+
|
76 |
+
Please strictly follow these rules when answering the participant's questions.
|
77 |
+
|
78 |
+
**Riddle:** {}
|
79 |
+
|
80 |
+
**Answer:** {}
|
81 |
+
|
82 |
+
**Participant's question:** {}
|
83 |
+
"""
|
84 |
+
|
85 |
+
|
86 |
+
def get_prompt_template(using_p1=True, chinese_prompt=True):
|
87 |
+
if using_p1:
|
88 |
+
return P1 if chinese_prompt else P1_en
|
89 |
+
else:
|
90 |
+
return P2 if chinese_prompt else P2_en
|
91 |
+
|
92 |
|
93 |
def extract_answer(text, debug=False):
|
94 |
if text:
|
|
|
180 |
)
|
181 |
|
182 |
if tokenizer:
|
183 |
+
reasoning_prompt = get_prompt_template(using_p1, chinese_prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
def formatting_prompts_func(examples):
|
186 |
inputs = examples["text"]
|
|
|
255 |
else "llama-factory/data/alpaca_mgtv_p2.json"
|
256 |
)
|
257 |
|
258 |
+
if use_english_datasets:
|
259 |
+
alpaca_data_path = alpaca_data_path.replace(".json", "_en.json")
|
260 |
+
|
261 |
if os.path.exists(alpaca_data_path):
|
262 |
print("loading existing data from:", alpaca_data_path)
|
263 |
data = pd.read_json(alpaca_data_path, orient="records", lines=False)
|
264 |
return data
|
265 |
|
266 |
print("loading new data from:", alpaca_data_path)
|
267 |
+
chinese_prompt = not use_english_datasets
|
268 |
datasets = load_logical_reasoning_dataset(
|
269 |
+
data_path, using_p1=using_p1, chinese_prompt=chinese_prompt
|
270 |
)
|
271 |
|
272 |
+
prompt_template = get_prompt_template(using_p1, chinese_prompt)
|
273 |
+
|
274 |
df_train = datasets["train"].to_pandas()
|
275 |
df_train["instruction"] = df_train.apply(
|
276 |
lambda x: prompt_template.format(x["puzzle"], x["truth"], x["text"]), axis=1
|
results/mgtv-llama3_p1_r2_full_metrics.csv
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
epoch,model,accuracy,precision,recall,f1
|
2 |
+
0,shenzhi-wang/Llama3-8B-Chinese-Chat_torch.bfloat16,0.7836666666666666,0.7667122897184859,0.7929173693086004,0.7679400621793133
|
3 |
+
1,shenzhi-wang/Llama3-8B-Chinese-Chat/checkpoint-175_torch.bfloat16,0.7706666666666667,0.8072750943858197,0.7706666666666667,0.7835719791561528
|
4 |
+
2,shenzhi-wang/Llama3-8B-Chinese-Chat/checkpoint-350_torch.bfloat16,0.724,0.8118050163437011,0.724,0.7562266825513707
|
5 |
+
3,shenzhi-wang/Llama3-8B-Chinese-Chat/checkpoint-525_torch.bfloat16,0.6756666666666666,0.7811762160181578,0.6756666666666666,0.7108457483297581
|
6 |
+
4,shenzhi-wang/Llama3-8B-Chinese-Chat/checkpoint-700_torch.bfloat16,0.6496666666666666,0.779896556141616,0.6496666666666666,0.6931844557591907
|
results/mgtv-llama3_p2_r2_full_metrics.csv
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
epoch,model,accuracy,precision,recall,f1
|
2 |
+
0,shenzhi-wang/Llama3-8B-Chinese-Chat_torch.bfloat16,0.73,0.7709739363586101,0.73,0.7462914191370829
|
3 |
+
1,shenzhi-wang/Llama3-8B-Chinese-Chat/checkpoint-175_torch.bfloat16,0.718,0.8113087212796575,0.718,0.75010620119596
|
4 |
+
2,shenzhi-wang/Llama3-8B-Chinese-Chat/checkpoint-350_torch.bfloat16,0.7273333333333334,0.8025119533060184,0.7273333333333334,0.7549822040428019
|
5 |
+
3,shenzhi-wang/Llama3-8B-Chinese-Chat/checkpoint-525_torch.bfloat16,0.6883333333333334,0.7816168321128566,0.6883333333333334,0.716763388345211
|
6 |
+
4,shenzhi-wang/Llama3-8B-Chinese-Chat/checkpoint-700_torch.bfloat16,0.6406666666666667,0.7636301286950402,0.6406666666666667,0.6807929233309169
|
scripts/eval-mgtv-llama3_8b_en.sh
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/sh
|
2 |
+
|
3 |
+
BASEDIR=$(dirname "$0")
|
4 |
+
cd $BASEDIR/..
|
5 |
+
echo Current Directory:
|
6 |
+
pwd
|
7 |
+
|
8 |
+
BASEDIR=`pwd`
|
9 |
+
|
10 |
+
nvidia-smi
|
11 |
+
uname -a
|
12 |
+
cat /etc/os-release
|
13 |
+
lscpu
|
14 |
+
grep MemTotal /proc/meminfo
|
15 |
+
|
16 |
+
#pip install -r requirements.txt
|
17 |
+
#cd ../LLaMA-Factory && pip install -e .[torch,bitsandbytes]
|
18 |
+
|
19 |
+
export LOGICAL_REASONING_DATA_PATH=datasets/mgtv
|
20 |
+
export RESIZE_TOKEN_EMBEDDINGS=true
|
21 |
+
export START_EPOCH=0
|
22 |
+
export USING_LLAMA_FACTORY=true
|
23 |
+
|
24 |
+
export MODEL_NAME=shenzhi-wang/Llama3-8B-Chinese-Chat
|
25 |
+
export MODEL_PREFIX=llama3-8b_lora_sft_bf16
|
26 |
+
|
27 |
+
export LOGICAL_REASONING_RESULTS_PATH=results/$MODEL_PREFIX-p1_en.csv
|
28 |
+
export ADAPTER_PATH_BASE=llama-factory/saves/llama3-8b/lora/sft_bf16_p1_full_en
|
29 |
+
export USING_P1_PROMPT_TEMPLATE=true
|
30 |
+
echo "Eval $MODEL_NAME with $ADAPTER_PATH_BASE"
|
31 |
+
python llm_toolkit/eval_logical_reasoning_all_epochs.py
|
32 |
+
|
33 |
+
export LOGICAL_REASONING_RESULTS_PATH=results/$MODEL_PREFIX-p2_en.csv
|
34 |
+
export ADAPTER_PATH_BASE=llama-factory/saves/llama3-8b/lora/sft_bf16_p2_full_en
|
35 |
+
export USING_P1_PROMPT_TEMPLATE=false
|
36 |
+
echo "Eval $MODEL_NAME with $ADAPTER_PATH_BASE"
|
37 |
+
python llm_toolkit/eval_logical_reasoning_all_epochs.py
|
scripts/tune-mgtv-llama3_8b_en.sh
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/sh
|
2 |
+
|
3 |
+
BASEDIR=$(dirname "$0")
|
4 |
+
cd $BASEDIR/..
|
5 |
+
echo Current Directory:
|
6 |
+
pwd
|
7 |
+
|
8 |
+
BASEDIR=`pwd`
|
9 |
+
|
10 |
+
nvidia-smi
|
11 |
+
uname -a
|
12 |
+
cat /etc/os-release
|
13 |
+
lscpu
|
14 |
+
grep MemTotal /proc/meminfo
|
15 |
+
|
16 |
+
#pip install -r requirements.txt
|
17 |
+
#cd ../LLaMA-Factory && pip install -e .[torch,bitsandbytes] && cd $BASEDIR
|
18 |
+
#pip install transformers==4.41.2
|
19 |
+
#pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
|
20 |
+
|
21 |
+
export LOGICAL_REASONING_DATA_PATH=datasets/mgtv
|
22 |
+
|
23 |
+
export MODEL_NAME=meta-llama/Meta-Llama-3-8B-Instruct
|
24 |
+
|
25 |
+
export MODEL_PREFIX=llama3-8b_lora_sft_bf16
|
26 |
+
|
27 |
+
export CONFIG_FILE=config/$MODEL_PREFIX-p1_en.yaml
|
28 |
+
echo "Tuning $MODEL_NAME with $CONFIG_FILE"
|
29 |
+
$BASEDIR/scripts/tune-lf.sh $CONFIG_FILE
|
30 |
+
|
31 |
+
|
32 |
+
export CONFIG_FILE=config/$MODEL_PREFIX-p2_en.yaml
|
33 |
+
echo "Tuning $MODEL_NAME with $CONFIG_FILE"
|
34 |
+
$BASEDIR/scripts/tune-lf.sh $CONFIG_FILE
|
35 |
+
|
36 |
+
|
37 |
+
$BASEDIR/scripts/eval-mgtv-llama3_8b_en.sh
|
scripts/tune-mgtv.sh
CHANGED
@@ -1 +1 @@
|
|
1 |
-
tune-mgtv-
|
|
|
1 |
+
tune-mgtv-llama3_8b_en.sh
|