Spaces:
Build error
Build error
InternLM 2.5 results
Browse files- competition/04_InternLM_T4.ipynb +0 -0
- competition/05_InternLM_NV4080.ipynb +0 -0
- llm_toolkit/{chat_mac.py → chat.py} +0 -0
- llm_toolkit/{eval_mac.py → eval.py} +0 -0
- llm_toolkit/eval_lf.py +110 -0
- llm_toolkit/eval_logical_reasoning.py +73 -0
- llm_toolkit/llm_utils.py +160 -0
- llm_toolkit/logical_reasoning_utils.py +222 -0
- llm_toolkit/{tune_mac.py → tune.py} +3 -4
- novel-translation/00_Data_Analysis.ipynb +0 -0
- novel-translation/07r2_tune-lf-py3.11.ipynb +0 -0
- novel-translation/08r2_eval-lf-py3.11.ipynb +0 -0
- novel-translation/09_tune-lf-medium-py3.11.ipynb +0 -0
- results/mgtv-results.csv +0 -0
- results/mgtv-results_nv4080.csv +0 -0
competition/04_InternLM_T4.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
competition/05_InternLM_NV4080.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
llm_toolkit/{chat_mac.py → chat.py}
RENAMED
File without changes
|
llm_toolkit/{eval_mac.py → eval.py}
RENAMED
File without changes
|
llm_toolkit/eval_lf.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import torch
|
4 |
+
from dotenv import find_dotenv, load_dotenv
|
5 |
+
from llamafactory.chat import ChatModel
|
6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
7 |
+
|
8 |
+
found_dotenv = find_dotenv(".env")
|
9 |
+
|
10 |
+
if len(found_dotenv) == 0:
|
11 |
+
found_dotenv = find_dotenv(".env.example")
|
12 |
+
print(f"loading env vars from: {found_dotenv}")
|
13 |
+
load_dotenv(found_dotenv, override=False)
|
14 |
+
|
15 |
+
path = os.path.dirname(found_dotenv)
|
16 |
+
print(f"Adding {path} to sys.path")
|
17 |
+
sys.path.append(path)
|
18 |
+
|
19 |
+
from llm_toolkit.translation_utils import *
|
20 |
+
|
21 |
+
model_name = os.getenv("MODEL_NAME")
|
22 |
+
adapter_name_or_path = os.getenv("ADAPTER_NAME_OR_PATH")
|
23 |
+
load_in_4bit = os.getenv("LOAD_IN_4BIT") == "true"
|
24 |
+
data_path = os.getenv("DATA_PATH")
|
25 |
+
results_path = os.getenv("RESULTS_PATH")
|
26 |
+
|
27 |
+
print(model_name, adapter_name_or_path, load_in_4bit, data_path, results_path)
|
28 |
+
|
29 |
+
|
30 |
+
def load_model(
|
31 |
+
model_name,
|
32 |
+
max_seq_length=2048,
|
33 |
+
dtype=torch.bfloat16,
|
34 |
+
load_in_4bit=False,
|
35 |
+
adapter_name_or_path=None,
|
36 |
+
):
|
37 |
+
print(f"loading model: {model_name}")
|
38 |
+
|
39 |
+
if adapter_name_or_path:
|
40 |
+
template = "llama3" if "llama-3" in model_name.lower() else "chatml"
|
41 |
+
|
42 |
+
args = dict(
|
43 |
+
model_name_or_path=model_name,
|
44 |
+
adapter_name_or_path=adapter_name_or_path, # load the saved LoRA adapters
|
45 |
+
template=template, # same to the one in training
|
46 |
+
finetuning_type="lora", # same to the one in training
|
47 |
+
quantization_bit=4 if load_in_4bit else None, # load 4-bit quantized model
|
48 |
+
)
|
49 |
+
chat_model = ChatModel(args)
|
50 |
+
return chat_model.engine.model, chat_model.engine.tokenizer
|
51 |
+
|
52 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
53 |
+
bnb_config = BitsAndBytesConfig(
|
54 |
+
load_in_4bit=load_in_4bit,
|
55 |
+
bnb_4bit_quant_type="nf4",
|
56 |
+
bnb_4bit_use_double_quant=False,
|
57 |
+
bnb_4bit_compute_dtype=dtype,
|
58 |
+
)
|
59 |
+
|
60 |
+
model = AutoModelForCausalLM.from_pretrained(
|
61 |
+
model_name,
|
62 |
+
quantization_config=bnb_config,
|
63 |
+
torch_dtype=dtype,
|
64 |
+
trust_remote_code=True,
|
65 |
+
device_map="auto",
|
66 |
+
)
|
67 |
+
|
68 |
+
return model, tokenizer
|
69 |
+
|
70 |
+
|
71 |
+
gpu_stats = torch.cuda.get_device_properties(0)
|
72 |
+
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
|
73 |
+
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
|
74 |
+
print(f"(1) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
|
75 |
+
print(f"{start_gpu_memory} GB of memory reserved.")
|
76 |
+
|
77 |
+
model, tokenizer = load_model(
|
78 |
+
model_name, load_in_4bit=load_in_4bit, adapter_name_or_path=adapter_name_or_path
|
79 |
+
)
|
80 |
+
|
81 |
+
gpu_stats = torch.cuda.get_device_properties(0)
|
82 |
+
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
|
83 |
+
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
|
84 |
+
print(f"(2) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
|
85 |
+
print(f"{start_gpu_memory} GB of memory reserved.")
|
86 |
+
|
87 |
+
datasets = load_translation_dataset(data_path, tokenizer)
|
88 |
+
|
89 |
+
print("Evaluating model: " + model_name)
|
90 |
+
predictions = eval_model(model, tokenizer, datasets["test"])
|
91 |
+
|
92 |
+
gpu_stats = torch.cuda.get_device_properties(0)
|
93 |
+
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
|
94 |
+
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
|
95 |
+
print(f"(3) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
|
96 |
+
print(f"{start_gpu_memory} GB of memory reserved.")
|
97 |
+
|
98 |
+
if adapter_name_or_path is not None:
|
99 |
+
model_name += "_" + adapter_name_or_path.split("/")[-1]
|
100 |
+
|
101 |
+
save_results(
|
102 |
+
model_name,
|
103 |
+
results_path,
|
104 |
+
datasets["test"],
|
105 |
+
predictions,
|
106 |
+
debug=True,
|
107 |
+
)
|
108 |
+
|
109 |
+
metrics = calc_metrics(datasets["test"]["english"], predictions, debug=True)
|
110 |
+
print(metrics)
|
llm_toolkit/eval_logical_reasoning.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import torch
|
4 |
+
from dotenv import find_dotenv, load_dotenv
|
5 |
+
|
6 |
+
found_dotenv = find_dotenv(".env")
|
7 |
+
|
8 |
+
if len(found_dotenv) == 0:
|
9 |
+
found_dotenv = find_dotenv(".env.example")
|
10 |
+
print(f"loading env vars from: {found_dotenv}")
|
11 |
+
load_dotenv(found_dotenv, override=False)
|
12 |
+
|
13 |
+
path = os.path.dirname(found_dotenv)
|
14 |
+
print(f"Adding {path} to sys.path")
|
15 |
+
sys.path.append(path)
|
16 |
+
|
17 |
+
from llm_toolkit.llm_utils import *
|
18 |
+
from llm_toolkit.logical_reasoning_utils import *
|
19 |
+
|
20 |
+
model_name = os.getenv("MODEL_NAME")
|
21 |
+
adapter_name_or_path = os.getenv("ADAPTER_NAME_OR_PATH")
|
22 |
+
load_in_4bit = os.getenv("LOAD_IN_4BIT") == "true"
|
23 |
+
data_path = os.getenv("LOGICAL_REASONING_DATA_PATH")
|
24 |
+
results_path = os.getenv("LOGICAL_REASONING_RESULTS_PATH")
|
25 |
+
|
26 |
+
print(model_name, adapter_name_or_path, load_in_4bit, data_path, results_path)
|
27 |
+
|
28 |
+
gpu_stats = torch.cuda.get_device_properties(0)
|
29 |
+
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
|
30 |
+
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
|
31 |
+
print(f"(1) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
|
32 |
+
print(f"{start_gpu_memory} GB of memory reserved.")
|
33 |
+
|
34 |
+
model, tokenizer = load_model(
|
35 |
+
model_name, load_in_4bit=load_in_4bit, adapter_name_or_path=adapter_name_or_path
|
36 |
+
)
|
37 |
+
|
38 |
+
gpu_stats = torch.cuda.get_device_properties(0)
|
39 |
+
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
|
40 |
+
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
|
41 |
+
print(f"(2) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
|
42 |
+
print(f"{start_gpu_memory} GB of memory reserved.")
|
43 |
+
|
44 |
+
datasets = load_logical_reasoning_dataset(data_path, tokenizer)
|
45 |
+
if len(sys.argv) > 1:
|
46 |
+
num = int(sys.argv[1])
|
47 |
+
if num > 0:
|
48 |
+
print(f"--- evaluating {num} entries")
|
49 |
+
# create new dataset exluding those idx
|
50 |
+
datasets["test"] = datasets["test"].select(range(num))
|
51 |
+
|
52 |
+
print("Evaluating model: " + model_name)
|
53 |
+
predictions = eval_model(model, tokenizer, datasets["test"])
|
54 |
+
|
55 |
+
gpu_stats = torch.cuda.get_device_properties(0)
|
56 |
+
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
|
57 |
+
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
|
58 |
+
print(f"(3) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
|
59 |
+
print(f"{start_gpu_memory} GB of memory reserved.")
|
60 |
+
|
61 |
+
if adapter_name_or_path is not None:
|
62 |
+
model_name += "_" + adapter_name_or_path.split("/")[-1]
|
63 |
+
|
64 |
+
save_results(
|
65 |
+
model_name,
|
66 |
+
results_path,
|
67 |
+
datasets["test"],
|
68 |
+
predictions,
|
69 |
+
debug=True,
|
70 |
+
)
|
71 |
+
|
72 |
+
metrics = calc_metrics(datasets["test"]["label"], predictions, debug=True)
|
73 |
+
print(metrics)
|
llm_toolkit/llm_utils.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import sys
|
4 |
+
import torch
|
5 |
+
from llamafactory.chat import ChatModel
|
6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextStreamer
|
7 |
+
|
8 |
+
|
9 |
+
def load_model(
|
10 |
+
model_name,
|
11 |
+
max_seq_length=2048,
|
12 |
+
dtype=torch.bfloat16,
|
13 |
+
load_in_4bit=False,
|
14 |
+
adapter_name_or_path=None,
|
15 |
+
):
|
16 |
+
print(f"loading model: {model_name}")
|
17 |
+
|
18 |
+
if adapter_name_or_path:
|
19 |
+
template = "llama3" if "llama-3" in model_name.lower() else "chatml"
|
20 |
+
|
21 |
+
args = dict(
|
22 |
+
model_name_or_path=model_name,
|
23 |
+
adapter_name_or_path=adapter_name_or_path, # load the saved LoRA adapters
|
24 |
+
template=template, # same to the one in training
|
25 |
+
finetuning_type="lora", # same to the one in training
|
26 |
+
quantization_bit=4 if load_in_4bit else None, # load 4-bit quantized model
|
27 |
+
)
|
28 |
+
chat_model = ChatModel(args)
|
29 |
+
return chat_model.engine.model, chat_model.engine.tokenizer
|
30 |
+
|
31 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
32 |
+
bnb_config = BitsAndBytesConfig(
|
33 |
+
load_in_4bit=load_in_4bit,
|
34 |
+
bnb_4bit_quant_type="nf4",
|
35 |
+
bnb_4bit_use_double_quant=False,
|
36 |
+
bnb_4bit_compute_dtype=dtype,
|
37 |
+
)
|
38 |
+
|
39 |
+
model = AutoModelForCausalLM.from_pretrained(
|
40 |
+
model_name,
|
41 |
+
quantization_config=bnb_config,
|
42 |
+
torch_dtype=dtype,
|
43 |
+
trust_remote_code=True,
|
44 |
+
device_map="auto",
|
45 |
+
)
|
46 |
+
|
47 |
+
return model, tokenizer
|
48 |
+
|
49 |
+
def test_model(model, tokenizer, prompt):
|
50 |
+
inputs = tokenizer(
|
51 |
+
[prompt],
|
52 |
+
return_tensors="pt",
|
53 |
+
).to("cuda")
|
54 |
+
|
55 |
+
text_streamer = TextStreamer(tokenizer)
|
56 |
+
|
57 |
+
_ = model.generate(
|
58 |
+
**inputs, max_new_tokens=2048, streamer=text_streamer, use_cache=True
|
59 |
+
)
|
60 |
+
|
61 |
+
|
62 |
+
def extract_answer(text, debug=False):
|
63 |
+
if text:
|
64 |
+
# Remove the begin and end tokens
|
65 |
+
text = re.sub(
|
66 |
+
r".*?(assistant|\[/INST\]).+?\b", "", text, flags=re.DOTALL | re.MULTILINE
|
67 |
+
)
|
68 |
+
if debug:
|
69 |
+
print("--------\nstep 1:", text)
|
70 |
+
|
71 |
+
text = re.sub(r"<.+?>.*", "", text, flags=re.DOTALL | re.MULTILINE)
|
72 |
+
if debug:
|
73 |
+
print("--------\nstep 2:", text)
|
74 |
+
|
75 |
+
text = re.sub(
|
76 |
+
r".*?end_header_id\|>\n\n", "", text, flags=re.DOTALL | re.MULTILINE
|
77 |
+
)
|
78 |
+
if debug:
|
79 |
+
print("--------\nstep 3:", text)
|
80 |
+
|
81 |
+
return text
|
82 |
+
|
83 |
+
def eval_model(model, tokenizer, eval_dataset):
|
84 |
+
total = len(eval_dataset)
|
85 |
+
predictions = []
|
86 |
+
for i in tqdm(range(total)):
|
87 |
+
inputs = tokenizer(
|
88 |
+
eval_dataset["prompt"][i : i + 1],
|
89 |
+
return_tensors="pt",
|
90 |
+
).to("cuda")
|
91 |
+
|
92 |
+
outputs = model.generate(**inputs, max_new_tokens=4096, use_cache=False)
|
93 |
+
decoded_output = tokenizer.batch_decode(outputs)
|
94 |
+
debug = i == 0
|
95 |
+
decoded_output = [
|
96 |
+
extract_answer(output, debug=debug) for output in decoded_output
|
97 |
+
]
|
98 |
+
predictions.extend(decoded_output)
|
99 |
+
|
100 |
+
return predictions
|
101 |
+
|
102 |
+
def save_model(
|
103 |
+
model,
|
104 |
+
tokenizer,
|
105 |
+
include_gguf=True,
|
106 |
+
include_merged=True,
|
107 |
+
publish=True,
|
108 |
+
):
|
109 |
+
try:
|
110 |
+
token = os.getenv("HF_TOKEN") or None
|
111 |
+
model_name = os.getenv("MODEL_NAME")
|
112 |
+
|
113 |
+
save_method = "lora"
|
114 |
+
quantization_method = "q5_k_m"
|
115 |
+
|
116 |
+
model_names = get_model_names(
|
117 |
+
model_name, save_method=save_method, quantization_method=quantization_method
|
118 |
+
)
|
119 |
+
|
120 |
+
model.save_pretrained(model_names["local"])
|
121 |
+
tokenizer.save_pretrained(model_names["local"])
|
122 |
+
|
123 |
+
if publish:
|
124 |
+
model.push_to_hub(
|
125 |
+
model_names["hub"],
|
126 |
+
token=token,
|
127 |
+
)
|
128 |
+
tokenizer.push_to_hub(
|
129 |
+
model_names["hub"],
|
130 |
+
token=token,
|
131 |
+
)
|
132 |
+
|
133 |
+
if include_merged:
|
134 |
+
model.save_pretrained_merged(
|
135 |
+
model_names["local"] + "-merged", tokenizer, save_method=save_method
|
136 |
+
)
|
137 |
+
if publish:
|
138 |
+
model.push_to_hub_merged(
|
139 |
+
model_names["hub"] + "-merged",
|
140 |
+
tokenizer,
|
141 |
+
save_method="lora",
|
142 |
+
token="",
|
143 |
+
)
|
144 |
+
|
145 |
+
if include_gguf:
|
146 |
+
model.save_pretrained_gguf(
|
147 |
+
model_names["local-gguf"],
|
148 |
+
tokenizer,
|
149 |
+
quantization_method=quantization_method,
|
150 |
+
)
|
151 |
+
|
152 |
+
if publish:
|
153 |
+
model.push_to_hub_gguf(
|
154 |
+
model_names["hub-gguf"],
|
155 |
+
tokenizer,
|
156 |
+
quantization_method=quantization_method,
|
157 |
+
token=token,
|
158 |
+
)
|
159 |
+
except Exception as e:
|
160 |
+
print(e)
|
llm_toolkit/logical_reasoning_utils.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import pandas as pd
|
4 |
+
import seaborn as sns
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
from datasets import load_dataset
|
7 |
+
from llm_toolkit.llm_utils import extract_answer
|
8 |
+
from tqdm import tqdm
|
9 |
+
|
10 |
+
print(f"loading {__file__}")
|
11 |
+
|
12 |
+
def calc_metrics(references, predictions, debug=False):
|
13 |
+
assert len(references) == len(
|
14 |
+
predictions
|
15 |
+
), f"lengths are difference: {len(references)} != {len(predictions)}"
|
16 |
+
|
17 |
+
predictions = [extract_answer(text) for text in predictions]
|
18 |
+
|
19 |
+
correct = [1 if ref == pred else 0 for ref, pred in zip(references, predictions)]
|
20 |
+
accuracy = sum(correct) / len(references)
|
21 |
+
|
22 |
+
results = {"accuracy": accuracy}
|
23 |
+
if debug:
|
24 |
+
incorrect_ids = [i for i, c in enumerate(correct) if c == 0]
|
25 |
+
results["incorrect_ids"] = incorrect_ids
|
26 |
+
|
27 |
+
return results
|
28 |
+
|
29 |
+
|
30 |
+
def save_results(model_name, results_path, dataset, predictions, debug=False):
|
31 |
+
if not os.path.exists(results_path):
|
32 |
+
# Get the directory part of the file path
|
33 |
+
dir_path = os.path.dirname(results_path)
|
34 |
+
|
35 |
+
# Create all directories in the path (if they don't exist)
|
36 |
+
os.makedirs(dir_path, exist_ok=True)
|
37 |
+
df = dataset.to_pandas()
|
38 |
+
df.drop(columns=["answer", "prompt", "train_text"], inplace=True)
|
39 |
+
else:
|
40 |
+
df = pd.read_csv(results_path, on_bad_lines="warn")
|
41 |
+
|
42 |
+
df[model_name] = predictions
|
43 |
+
|
44 |
+
if debug:
|
45 |
+
print(df.head(1))
|
46 |
+
|
47 |
+
df.to_csv(results_path, index=False)
|
48 |
+
|
49 |
+
|
50 |
+
def load_logical_reasoning_dataset(data_path, tokenizer=None):
|
51 |
+
train_data_file = data_path + "/train.csv"
|
52 |
+
test_data_file = data_path + "/dev.csv"
|
53 |
+
|
54 |
+
print("loading train/test data files")
|
55 |
+
datasets = load_dataset(
|
56 |
+
"csv",
|
57 |
+
data_files={"train": train_data_file, "test": test_data_file},
|
58 |
+
)
|
59 |
+
|
60 |
+
if tokenizer:
|
61 |
+
reasoning_prompt = """你是一个逻辑游戏的主持人。游戏规则如下:
|
62 |
+
|
63 |
+
1. 参与者会得到一个谜题。
|
64 |
+
2. 参与者可以通过提问来获取线索,尝试解开谜题。
|
65 |
+
3. 对于每个问题,主持人将根据实际情况回答以下五个选项之一:是、不是、不重要、回答正确、问法错误。
|
66 |
+
4. 回答中不能添加任何其它信息,也不能省略选项中的任何一个字。例如,不可以把“不是”省略成“不”。
|
67 |
+
5. 参与者需要根据回答来推理,并最终找出谜题的正确答案。
|
68 |
+
|
69 |
+
请严格按照这些规则回答参与者提出的问题。
|
70 |
+
|
71 |
+
谜题: {}
|
72 |
+
|
73 |
+
实际情况: {}
|
74 |
+
|
75 |
+
参与者提出的问题: {}
|
76 |
+
"""
|
77 |
+
def formatting_prompts_func(examples):
|
78 |
+
inputs = examples["text"]
|
79 |
+
outputs = examples["label"]
|
80 |
+
puzzles = examples["puzzle"]
|
81 |
+
truths = examples["truth"]
|
82 |
+
|
83 |
+
messages = [
|
84 |
+
{
|
85 |
+
"role": "system",
|
86 |
+
"content": "You are an expert in logical reasoning.",
|
87 |
+
},
|
88 |
+
None,
|
89 |
+
]
|
90 |
+
|
91 |
+
model_name = os.getenv("MODEL_NAME")
|
92 |
+
|
93 |
+
if "mistral" in model_name.lower():
|
94 |
+
messages = messages[1:]
|
95 |
+
|
96 |
+
texts = []
|
97 |
+
prompts = []
|
98 |
+
for input, output, puzzle, truth in zip(inputs, outputs, puzzles, truths):
|
99 |
+
prompt = reasoning_prompt.format(puzzle, truth, input)
|
100 |
+
messages[-1] = {"role": "user", "content": prompt}
|
101 |
+
|
102 |
+
prompt = tokenizer.apply_chat_template(
|
103 |
+
messages, tokenize=False, add_generation_prompt=True
|
104 |
+
)
|
105 |
+
prompts.append(prompt)
|
106 |
+
texts.append(prompt + output + tokenizer.eos_token)
|
107 |
+
return {"train_text": texts, "prompt": prompts}
|
108 |
+
|
109 |
+
datasets = datasets.map(
|
110 |
+
formatting_prompts_func,
|
111 |
+
batched=True,
|
112 |
+
)
|
113 |
+
|
114 |
+
print(datasets)
|
115 |
+
return datasets
|
116 |
+
|
117 |
+
|
118 |
+
def eval_model(model, tokenizer, eval_dataset):
|
119 |
+
total = len(eval_dataset)
|
120 |
+
predictions = []
|
121 |
+
for i in tqdm(range(total)):
|
122 |
+
inputs = tokenizer(
|
123 |
+
eval_dataset["prompt"][i : i + 1],
|
124 |
+
return_tensors="pt",
|
125 |
+
).to("cuda")
|
126 |
+
|
127 |
+
outputs = model.generate(**inputs, max_new_tokens=4096, use_cache=False)
|
128 |
+
decoded_output = tokenizer.batch_decode(outputs)
|
129 |
+
debug = i == 0
|
130 |
+
decoded_output = [
|
131 |
+
extract_answer(output, debug=debug) for output in decoded_output
|
132 |
+
]
|
133 |
+
predictions.extend(decoded_output)
|
134 |
+
|
135 |
+
return predictions
|
136 |
+
|
137 |
+
|
138 |
+
def save_model(
|
139 |
+
model,
|
140 |
+
tokenizer,
|
141 |
+
include_gguf=True,
|
142 |
+
include_merged=True,
|
143 |
+
publish=True,
|
144 |
+
):
|
145 |
+
try:
|
146 |
+
token = os.getenv("HF_TOKEN") or None
|
147 |
+
model_name = os.getenv("MODEL_NAME")
|
148 |
+
|
149 |
+
save_method = "lora"
|
150 |
+
quantization_method = "q5_k_m"
|
151 |
+
|
152 |
+
model_names = get_model_names(
|
153 |
+
model_name, save_method=save_method, quantization_method=quantization_method
|
154 |
+
)
|
155 |
+
|
156 |
+
model.save_pretrained(model_names["local"])
|
157 |
+
tokenizer.save_pretrained(model_names["local"])
|
158 |
+
|
159 |
+
if publish:
|
160 |
+
model.push_to_hub(
|
161 |
+
model_names["hub"],
|
162 |
+
token=token,
|
163 |
+
)
|
164 |
+
tokenizer.push_to_hub(
|
165 |
+
model_names["hub"],
|
166 |
+
token=token,
|
167 |
+
)
|
168 |
+
|
169 |
+
if include_merged:
|
170 |
+
model.save_pretrained_merged(
|
171 |
+
model_names["local"] + "-merged", tokenizer, save_method=save_method
|
172 |
+
)
|
173 |
+
if publish:
|
174 |
+
model.push_to_hub_merged(
|
175 |
+
model_names["hub"] + "-merged",
|
176 |
+
tokenizer,
|
177 |
+
save_method="lora",
|
178 |
+
token="",
|
179 |
+
)
|
180 |
+
|
181 |
+
if include_gguf:
|
182 |
+
model.save_pretrained_gguf(
|
183 |
+
model_names["local-gguf"],
|
184 |
+
tokenizer,
|
185 |
+
quantization_method=quantization_method,
|
186 |
+
)
|
187 |
+
|
188 |
+
if publish:
|
189 |
+
model.push_to_hub_gguf(
|
190 |
+
model_names["hub-gguf"],
|
191 |
+
tokenizer,
|
192 |
+
quantization_method=quantization_method,
|
193 |
+
token=token,
|
194 |
+
)
|
195 |
+
except Exception as e:
|
196 |
+
print(e)
|
197 |
+
|
198 |
+
|
199 |
+
def get_metrics(df):
|
200 |
+
metrics_df = pd.DataFrame(df.columns.T)[2:]
|
201 |
+
metrics_df.rename(columns={0: "model"}, inplace=True)
|
202 |
+
metrics_df["model"] = metrics_df["model"].apply(lambda x: x.split("/")[-1])
|
203 |
+
metrics_df.reset_index(inplace=True)
|
204 |
+
metrics_df = metrics_df.drop(columns=["index"])
|
205 |
+
|
206 |
+
accuracy = []
|
207 |
+
meteor = []
|
208 |
+
bleu_1 = []
|
209 |
+
rouge_l = []
|
210 |
+
all_metrics = []
|
211 |
+
for col in df.columns[2:]:
|
212 |
+
metrics = calc_metrics(df["english"], df[col], debug=True)
|
213 |
+
print(f"{col}: {metrics}")
|
214 |
+
|
215 |
+
accuracy.append(metrics["accuracy"])
|
216 |
+
all_metrics.append(metrics)
|
217 |
+
|
218 |
+
metrics_df["accuracy"] = accuracy
|
219 |
+
metrics_df["all_metrics"] = all_metrics
|
220 |
+
|
221 |
+
return metrics_df
|
222 |
+
|
llm_toolkit/{tune_mac.py → tune.py}
RENAMED
@@ -22,7 +22,6 @@ model_name = os.getenv("MODEL_NAME")
|
|
22 |
load_in_4bit = os.getenv("LOAD_IN_4BIT") == "true"
|
23 |
eval_base_model = os.getenv("EVAL_BASE_MODEL") == "true"
|
24 |
eval_fine_tuned = os.getenv("EVAL_FINE_TUNED") == "true"
|
25 |
-
do_fine_tuning = os.getenv("DO_FINE_TUNING") == "true"
|
26 |
save_fine_tuned_model = os.getenv("SAVE_FINE_TUNED") == "true"
|
27 |
num_train_epochs = int(os.getenv("NUM_TRAIN_EPOCHS") or 0)
|
28 |
data_path = os.getenv("DATA_PATH")
|
@@ -42,7 +41,6 @@ print(
|
|
42 |
data_path,
|
43 |
results_path,
|
44 |
eval_base_model,
|
45 |
-
do_fine_tuning,
|
46 |
eval_fine_tuned,
|
47 |
save_fine_tuned_model,
|
48 |
)
|
@@ -84,8 +82,9 @@ print(f"(3) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
|
|
84 |
print(f"{start_gpu_memory} GB of memory reserved.")
|
85 |
|
86 |
|
87 |
-
|
88 |
-
|
|
|
89 |
|
90 |
trainer = load_trainer(
|
91 |
model,
|
|
|
22 |
load_in_4bit = os.getenv("LOAD_IN_4BIT") == "true"
|
23 |
eval_base_model = os.getenv("EVAL_BASE_MODEL") == "true"
|
24 |
eval_fine_tuned = os.getenv("EVAL_FINE_TUNED") == "true"
|
|
|
25 |
save_fine_tuned_model = os.getenv("SAVE_FINE_TUNED") == "true"
|
26 |
num_train_epochs = int(os.getenv("NUM_TRAIN_EPOCHS") or 0)
|
27 |
data_path = os.getenv("DATA_PATH")
|
|
|
41 |
data_path,
|
42 |
results_path,
|
43 |
eval_base_model,
|
|
|
44 |
eval_fine_tuned,
|
45 |
save_fine_tuned_model,
|
46 |
)
|
|
|
82 |
print(f"{start_gpu_memory} GB of memory reserved.")
|
83 |
|
84 |
|
85 |
+
def is_bfloat16_supported():
|
86 |
+
return True
|
87 |
+
|
88 |
|
89 |
trainer = load_trainer(
|
90 |
model,
|
novel-translation/00_Data_Analysis.ipynb
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
novel-translation/07r2_tune-lf-py3.11.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
novel-translation/08r2_eval-lf-py3.11.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
novel-translation/09_tune-lf-medium-py3.11.ipynb
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
results/mgtv-results.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
results/mgtv-results_nv4080.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|