dh-mc's picture
llama3 en result analyzed
f32ad3e
raw
history blame
7.75 kB
import os
import re
import torch
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
TextStreamer,
)
from tqdm import tqdm
def get_template(model_name):
model_name = model_name.lower()
if "llama" in model_name:
return "llama3"
if "internlm" in model_name:
return "intern2"
if "glm" in model_name:
return "glm4"
return "chatml"
def load_model(
model_name,
dtype=torch.bfloat16,
load_in_4bit=False,
adapter_name_or_path=None,
using_llama_factory=False,
):
print(f"loading model: {model_name} with adapter: {adapter_name_or_path}")
if using_llama_factory:
from llamafactory.chat import ChatModel
template = get_template(model_name)
args = dict(
model_name_or_path=model_name,
adapter_name_or_path=adapter_name_or_path, # load the saved LoRA adapters
template=template, # same to the one in training
finetuning_type="lora", # same to the one in training
quantization_bit=4 if load_in_4bit else None, # load 4-bit quantized model
)
chat_model = ChatModel(args)
if os.getenv("RESIZE_TOKEN_EMBEDDINGS") == "true":
chat_model.engine.model.resize_token_embeddings(
len(chat_model.engine.tokenizer), pad_to_multiple_of=32
)
return chat_model.engine.model, chat_model.engine.tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
bnb_config = BitsAndBytesConfig(
load_in_4bit=load_in_4bit,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=False,
bnb_4bit_compute_dtype=dtype,
)
model = (
AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config,
torch_dtype=dtype,
trust_remote_code=True,
device_map="auto",
)
if load_in_4bit
else AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=dtype,
trust_remote_code=True,
device_map="auto",
)
)
if adapter_name_or_path:
adapter_name = model.load_adapter(adapter_name_or_path)
model.active_adapters = adapter_name
if not tokenizer.pad_token:
print("Adding pad token to tokenizer for model: ", model_name)
tokenizer.add_special_tokens({"pad_token": "<pad>"})
model.resize_token_embeddings(len(tokenizer), pad_to_multiple_of=32)
return model, tokenizer
def check_gpu():
# torch.cuda.is_available() checks and returns a Boolean True if a GPU is available, else it'll return False
is_cuda = torch.cuda.is_available()
# If we have a GPU available, we'll set our device to GPU. We'll use this device variable later in our code.
if is_cuda:
device = torch.device("cuda")
print("CUDA is available, we have found ", torch.cuda.device_count(), " GPU(s)")
print(torch.cuda.get_device_name(0))
print("CUDA version: " + torch.version.cuda)
elif torch.backends.mps.is_available():
device = torch.device("mps")
print("MPS is available")
else:
device = torch.device("cpu")
print("GPU/MPS not available, CPU used")
return device
def test_model(model, tokenizer, prompt, device="cuda"):
inputs = tokenizer(
[prompt],
return_tensors="pt",
).to(device)
text_streamer = TextStreamer(tokenizer)
_ = model.generate(
**inputs, max_new_tokens=2048, streamer=text_streamer, use_cache=True
)
def extract_answer(text, debug=False):
if text:
# Remove the begin and end tokens
text = re.sub(
r".*?(assistant|\[/INST\]).+?\b",
"",
text,
flags=re.DOTALL | re.MULTILINE,
)
if debug:
print("--------\nstep 1:", text)
text = re.sub(r"<.+?>.*", "", text, flags=re.DOTALL | re.MULTILINE)
if debug:
print("--------\nstep 2:", text)
text = re.sub(
r".*?end_header_id\|>\n\n", "", text, flags=re.DOTALL | re.MULTILINE
)
if debug:
print("--------\nstep 3:", text)
text = text.split("。")[0].strip()
if debug:
print("--------\nstep 4:", text)
text = re.sub(
r"^Response:.+?\b",
"",
text,
flags=re.DOTALL | re.MULTILINE,
)
if debug:
print("--------\nstep 5:", text)
return text
def eval_model(
model,
tokenizer,
eval_dataset,
device="cuda",
max_new_tokens=4096,
repetition_penalty=1.0,
batch_size=1,
):
total = len(eval_dataset)
predictions = []
model.eval()
with torch.no_grad():
for i in tqdm(range(0, total, batch_size)): # Iterate in batches
batch_end = min(i + batch_size, total) # Ensure not to exceed dataset
batch_prompts = eval_dataset["prompt"][i:batch_end]
inputs = tokenizer(
batch_prompts,
return_tensors="pt",
padding=True, # Ensure all inputs in the batch have the same length
).to(device)
outputs = model.generate(
**inputs,
max_new_tokens=max_new_tokens,
repetition_penalty=repetition_penalty,
use_cache=False,
)
outputs = outputs[:, inputs["input_ids"].shape[1] :]
decoded_output = tokenizer.batch_decode(
outputs, skip_special_tokens=True
) # Skip special tokens for clean output
if i == 0:
print("Batch output:", decoded_output)
predictions.extend(decoded_output)
return predictions
def save_model(
model,
tokenizer,
include_gguf=True,
include_merged=True,
publish=True,
):
try:
token = os.getenv("HF_TOKEN") or None
model_name = os.getenv("MODEL_NAME")
save_method = "lora"
quantization_method = "q5_k_m"
model_names = get_model_names(
model_name, save_method=save_method, quantization_method=quantization_method
)
model.save_pretrained(model_names["local"])
tokenizer.save_pretrained(model_names["local"])
if publish:
model.push_to_hub(
model_names["hub"],
token=token,
)
tokenizer.push_to_hub(
model_names["hub"],
token=token,
)
if include_merged:
model.save_pretrained_merged(
model_names["local"] + "-merged", tokenizer, save_method=save_method
)
if publish:
model.push_to_hub_merged(
model_names["hub"] + "-merged",
tokenizer,
save_method="lora",
token="",
)
if include_gguf:
model.save_pretrained_gguf(
model_names["local-gguf"],
tokenizer,
quantization_method=quantization_method,
)
if publish:
model.push_to_hub_gguf(
model_names["hub-gguf"],
tokenizer,
quantization_method=quantization_method,
token=token,
)
except Exception as e:
print(e)
def print_row_details(df, indices=[0]):
for index in indices:
for col in df.columns:
print("-" * 50)
print(f"{col}: {df[col].iloc[index]}")