Spaces:
Running
Running
cbys4
commited on
Add files via upload
Browse files- PathRAG/llm.py +1104 -0
PathRAG/llm.py
ADDED
|
@@ -0,0 +1,1104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import base64
|
| 2 |
+
import copy
|
| 3 |
+
import json
|
| 4 |
+
import os
|
| 5 |
+
import re
|
| 6 |
+
import struct
|
| 7 |
+
from functools import lru_cache
|
| 8 |
+
from typing import List, Dict, Callable, Any, Union, Optional
|
| 9 |
+
import aioboto3
|
| 10 |
+
import aiohttp
|
| 11 |
+
import numpy as np
|
| 12 |
+
import ollama
|
| 13 |
+
import torch
|
| 14 |
+
import time
|
| 15 |
+
from openai import (
|
| 16 |
+
AsyncOpenAI,
|
| 17 |
+
APIConnectionError,
|
| 18 |
+
RateLimitError,
|
| 19 |
+
Timeout,
|
| 20 |
+
AsyncAzureOpenAI,
|
| 21 |
+
)
|
| 22 |
+
from pydantic import BaseModel, Field
|
| 23 |
+
from tenacity import (
|
| 24 |
+
retry,
|
| 25 |
+
stop_after_attempt,
|
| 26 |
+
wait_exponential,
|
| 27 |
+
retry_if_exception_type,
|
| 28 |
+
)
|
| 29 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 30 |
+
|
| 31 |
+
from .utils import (
|
| 32 |
+
wrap_embedding_func_with_attrs,
|
| 33 |
+
locate_json_string_body_from_string,
|
| 34 |
+
safe_unicode_decode,
|
| 35 |
+
logger,
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
import sys
|
| 39 |
+
|
| 40 |
+
if sys.version_info < (3, 9):
|
| 41 |
+
from typing import AsyncIterator
|
| 42 |
+
else:
|
| 43 |
+
from collections.abc import AsyncIterator
|
| 44 |
+
|
| 45 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
@retry(
|
| 49 |
+
stop=stop_after_attempt(3),
|
| 50 |
+
wait=wait_exponential(multiplier=1, min=4, max=10),
|
| 51 |
+
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
| 52 |
+
)
|
| 53 |
+
async def openai_complete_if_cache(
|
| 54 |
+
model,
|
| 55 |
+
prompt,
|
| 56 |
+
system_prompt=None,
|
| 57 |
+
history_messages=[],
|
| 58 |
+
base_url="https://api.openai.com/v1",
|
| 59 |
+
api_key="",
|
| 60 |
+
**kwargs,
|
| 61 |
+
) -> str:
|
| 62 |
+
if api_key:
|
| 63 |
+
os.environ["OPENAI_API_KEY"] = api_key
|
| 64 |
+
time.sleep(2)
|
| 65 |
+
openai_async_client = (
|
| 66 |
+
AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
|
| 67 |
+
)
|
| 68 |
+
kwargs.pop("hashing_kv", None)
|
| 69 |
+
kwargs.pop("keyword_extraction", None)
|
| 70 |
+
messages = []
|
| 71 |
+
if system_prompt:
|
| 72 |
+
messages.append({"role": "system", "content": system_prompt})
|
| 73 |
+
messages.extend(history_messages)
|
| 74 |
+
messages.append({"role": "user", "content": prompt})
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
logger.debug("===== Query Input to LLM =====")
|
| 78 |
+
logger.debug(f"Query: {prompt}")
|
| 79 |
+
logger.debug(f"System prompt: {system_prompt}")
|
| 80 |
+
logger.debug("Full context:")
|
| 81 |
+
if "response_format" in kwargs:
|
| 82 |
+
response = await openai_async_client.beta.chat.completions.parse(
|
| 83 |
+
model=model, messages=messages, **kwargs
|
| 84 |
+
)
|
| 85 |
+
else:
|
| 86 |
+
response = await openai_async_client.chat.completions.create(
|
| 87 |
+
model=model, messages=messages, **kwargs
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
if hasattr(response, "__aiter__"):
|
| 91 |
+
|
| 92 |
+
async def inner():
|
| 93 |
+
async for chunk in response:
|
| 94 |
+
content = chunk.choices[0].delta.content
|
| 95 |
+
if content is None:
|
| 96 |
+
continue
|
| 97 |
+
if r"\u" in content:
|
| 98 |
+
content = safe_unicode_decode(content.encode("utf-8"))
|
| 99 |
+
yield content
|
| 100 |
+
|
| 101 |
+
return inner()
|
| 102 |
+
else:
|
| 103 |
+
content = response.choices[0].message.content
|
| 104 |
+
if r"\u" in content:
|
| 105 |
+
content = safe_unicode_decode(content.encode("utf-8"))
|
| 106 |
+
return content
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
@retry(
|
| 110 |
+
stop=stop_after_attempt(3),
|
| 111 |
+
wait=wait_exponential(multiplier=1, min=4, max=10),
|
| 112 |
+
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
| 113 |
+
)
|
| 114 |
+
async def azure_openai_complete_if_cache(
|
| 115 |
+
model,
|
| 116 |
+
prompt,
|
| 117 |
+
system_prompt=None,
|
| 118 |
+
history_messages=[],
|
| 119 |
+
base_url=None,
|
| 120 |
+
api_key=None,
|
| 121 |
+
api_version=None,
|
| 122 |
+
**kwargs,
|
| 123 |
+
):
|
| 124 |
+
if api_key:
|
| 125 |
+
os.environ["AZURE_OPENAI_API_KEY"] = api_key
|
| 126 |
+
if base_url:
|
| 127 |
+
os.environ["AZURE_OPENAI_ENDPOINT"] = base_url
|
| 128 |
+
if api_version:
|
| 129 |
+
os.environ["AZURE_OPENAI_API_VERSION"] = api_version
|
| 130 |
+
|
| 131 |
+
openai_async_client = AsyncAzureOpenAI(
|
| 132 |
+
azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
|
| 133 |
+
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
|
| 134 |
+
api_version=os.getenv("AZURE_OPENAI_API_VERSION"),
|
| 135 |
+
)
|
| 136 |
+
kwargs.pop("hashing_kv", None)
|
| 137 |
+
messages = []
|
| 138 |
+
if system_prompt:
|
| 139 |
+
messages.append({"role": "system", "content": system_prompt})
|
| 140 |
+
messages.extend(history_messages)
|
| 141 |
+
if prompt is not None:
|
| 142 |
+
messages.append({"role": "user", "content": prompt})
|
| 143 |
+
|
| 144 |
+
response = await openai_async_client.chat.completions.create(
|
| 145 |
+
model=model, messages=messages, **kwargs
|
| 146 |
+
)
|
| 147 |
+
content = response.choices[0].message.content
|
| 148 |
+
|
| 149 |
+
return content
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
class BedrockError(Exception):
|
| 153 |
+
"""Generic error for issues related to Amazon Bedrock"""
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
@retry(
|
| 157 |
+
stop=stop_after_attempt(5),
|
| 158 |
+
wait=wait_exponential(multiplier=1, max=60),
|
| 159 |
+
retry=retry_if_exception_type((BedrockError)),
|
| 160 |
+
)
|
| 161 |
+
async def bedrock_complete_if_cache(
|
| 162 |
+
model,
|
| 163 |
+
prompt,
|
| 164 |
+
system_prompt=None,
|
| 165 |
+
history_messages=[],
|
| 166 |
+
aws_access_key_id=None,
|
| 167 |
+
aws_secret_access_key=None,
|
| 168 |
+
aws_session_token=None,
|
| 169 |
+
**kwargs,
|
| 170 |
+
) -> str:
|
| 171 |
+
os.environ["AWS_ACCESS_KEY_ID"] = os.environ.get(
|
| 172 |
+
"AWS_ACCESS_KEY_ID", aws_access_key_id
|
| 173 |
+
)
|
| 174 |
+
os.environ["AWS_SECRET_ACCESS_KEY"] = os.environ.get(
|
| 175 |
+
"AWS_SECRET_ACCESS_KEY", aws_secret_access_key
|
| 176 |
+
)
|
| 177 |
+
os.environ["AWS_SESSION_TOKEN"] = os.environ.get(
|
| 178 |
+
"AWS_SESSION_TOKEN", aws_session_token
|
| 179 |
+
)
|
| 180 |
+
kwargs.pop("hashing_kv", None)
|
| 181 |
+
|
| 182 |
+
messages = []
|
| 183 |
+
for history_message in history_messages:
|
| 184 |
+
message = copy.copy(history_message)
|
| 185 |
+
message["content"] = [{"text": message["content"]}]
|
| 186 |
+
messages.append(message)
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
messages.append({"role": "user", "content": [{"text": prompt}]})
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
args = {"modelId": model, "messages": messages}
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
if system_prompt:
|
| 196 |
+
args["system"] = [{"text": system_prompt}]
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
inference_params_map = {
|
| 200 |
+
"max_tokens": "maxTokens",
|
| 201 |
+
"top_p": "topP",
|
| 202 |
+
"stop_sequences": "stopSequences",
|
| 203 |
+
}
|
| 204 |
+
if inference_params := list(
|
| 205 |
+
set(kwargs) & set(["max_tokens", "temperature", "top_p", "stop_sequences"])
|
| 206 |
+
):
|
| 207 |
+
args["inferenceConfig"] = {}
|
| 208 |
+
for param in inference_params:
|
| 209 |
+
args["inferenceConfig"][inference_params_map.get(param, param)] = (
|
| 210 |
+
kwargs.pop(param)
|
| 211 |
+
)
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
session = aioboto3.Session()
|
| 215 |
+
async with session.client("bedrock-runtime") as bedrock_async_client:
|
| 216 |
+
try:
|
| 217 |
+
response = await bedrock_async_client.converse(**args, **kwargs)
|
| 218 |
+
except Exception as e:
|
| 219 |
+
raise BedrockError(e)
|
| 220 |
+
|
| 221 |
+
return response["output"]["message"]["content"][0]["text"]
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
@lru_cache(maxsize=1)
|
| 225 |
+
def initialize_hf_model(model_name):
|
| 226 |
+
hf_tokenizer = AutoTokenizer.from_pretrained(
|
| 227 |
+
model_name, device_map="auto", trust_remote_code=True
|
| 228 |
+
)
|
| 229 |
+
hf_model = AutoModelForCausalLM.from_pretrained(
|
| 230 |
+
model_name, device_map="auto", trust_remote_code=True
|
| 231 |
+
)
|
| 232 |
+
if hf_tokenizer.pad_token is None:
|
| 233 |
+
hf_tokenizer.pad_token = hf_tokenizer.eos_token
|
| 234 |
+
|
| 235 |
+
return hf_model, hf_tokenizer
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
@retry(
|
| 239 |
+
stop=stop_after_attempt(3),
|
| 240 |
+
wait=wait_exponential(multiplier=1, min=4, max=10),
|
| 241 |
+
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
| 242 |
+
)
|
| 243 |
+
async def hf_model_if_cache(
|
| 244 |
+
model,
|
| 245 |
+
prompt,
|
| 246 |
+
system_prompt=None,
|
| 247 |
+
history_messages=[],
|
| 248 |
+
**kwargs,
|
| 249 |
+
) -> str:
|
| 250 |
+
model_name = model
|
| 251 |
+
hf_model, hf_tokenizer = initialize_hf_model(model_name)
|
| 252 |
+
messages = []
|
| 253 |
+
if system_prompt:
|
| 254 |
+
messages.append({"role": "system", "content": system_prompt})
|
| 255 |
+
messages.extend(history_messages)
|
| 256 |
+
messages.append({"role": "user", "content": prompt})
|
| 257 |
+
kwargs.pop("hashing_kv", None)
|
| 258 |
+
input_prompt = ""
|
| 259 |
+
try:
|
| 260 |
+
input_prompt = hf_tokenizer.apply_chat_template(
|
| 261 |
+
messages, tokenize=False, add_generation_prompt=True
|
| 262 |
+
)
|
| 263 |
+
except Exception:
|
| 264 |
+
try:
|
| 265 |
+
ori_message = copy.deepcopy(messages)
|
| 266 |
+
if messages[0]["role"] == "system":
|
| 267 |
+
messages[1]["content"] = (
|
| 268 |
+
"<system>"
|
| 269 |
+
+ messages[0]["content"]
|
| 270 |
+
+ "</system>\n"
|
| 271 |
+
+ messages[1]["content"]
|
| 272 |
+
)
|
| 273 |
+
messages = messages[1:]
|
| 274 |
+
input_prompt = hf_tokenizer.apply_chat_template(
|
| 275 |
+
messages, tokenize=False, add_generation_prompt=True
|
| 276 |
+
)
|
| 277 |
+
except Exception:
|
| 278 |
+
len_message = len(ori_message)
|
| 279 |
+
for msgid in range(len_message):
|
| 280 |
+
input_prompt = (
|
| 281 |
+
input_prompt
|
| 282 |
+
+ "<"
|
| 283 |
+
+ ori_message[msgid]["role"]
|
| 284 |
+
+ ">"
|
| 285 |
+
+ ori_message[msgid]["content"]
|
| 286 |
+
+ "</"
|
| 287 |
+
+ ori_message[msgid]["role"]
|
| 288 |
+
+ ">\n"
|
| 289 |
+
)
|
| 290 |
+
|
| 291 |
+
input_ids = hf_tokenizer(
|
| 292 |
+
input_prompt, return_tensors="pt", padding=True, truncation=True
|
| 293 |
+
).to("cuda")
|
| 294 |
+
inputs = {k: v.to(hf_model.device) for k, v in input_ids.items()}
|
| 295 |
+
output = hf_model.generate(
|
| 296 |
+
**input_ids, max_new_tokens=512, num_return_sequences=1, early_stopping=True
|
| 297 |
+
)
|
| 298 |
+
response_text = hf_tokenizer.decode(
|
| 299 |
+
output[0][len(inputs["input_ids"][0]) :], skip_special_tokens=True
|
| 300 |
+
)
|
| 301 |
+
|
| 302 |
+
return response_text
|
| 303 |
+
|
| 304 |
+
|
| 305 |
+
@retry(
|
| 306 |
+
stop=stop_after_attempt(3),
|
| 307 |
+
wait=wait_exponential(multiplier=1, min=4, max=10),
|
| 308 |
+
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
| 309 |
+
)
|
| 310 |
+
async def ollama_model_if_cache(
|
| 311 |
+
model,
|
| 312 |
+
prompt,
|
| 313 |
+
system_prompt=None,
|
| 314 |
+
history_messages=[],
|
| 315 |
+
**kwargs,
|
| 316 |
+
) -> Union[str, AsyncIterator[str]]:
|
| 317 |
+
stream = True if kwargs.get("stream") else False
|
| 318 |
+
kwargs.pop("max_tokens", None)
|
| 319 |
+
host = kwargs.pop("host", None)
|
| 320 |
+
timeout = kwargs.pop("timeout", None)
|
| 321 |
+
kwargs.pop("hashing_kv", None)
|
| 322 |
+
ollama_client = ollama.AsyncClient(host=host, timeout=timeout)
|
| 323 |
+
messages = []
|
| 324 |
+
if system_prompt:
|
| 325 |
+
messages.append({"role": "system", "content": system_prompt})
|
| 326 |
+
messages.extend(history_messages)
|
| 327 |
+
messages.append({"role": "user", "content": prompt})
|
| 328 |
+
|
| 329 |
+
response = await ollama_client.chat(model=model, messages=messages, **kwargs)
|
| 330 |
+
if stream:
|
| 331 |
+
"""cannot cache stream response"""
|
| 332 |
+
|
| 333 |
+
async def inner():
|
| 334 |
+
async for chunk in response:
|
| 335 |
+
yield chunk["message"]["content"]
|
| 336 |
+
|
| 337 |
+
return inner()
|
| 338 |
+
else:
|
| 339 |
+
return response["message"]["content"]
|
| 340 |
+
|
| 341 |
+
|
| 342 |
+
@lru_cache(maxsize=1)
|
| 343 |
+
def initialize_lmdeploy_pipeline(
|
| 344 |
+
model,
|
| 345 |
+
tp=1,
|
| 346 |
+
chat_template=None,
|
| 347 |
+
log_level="WARNING",
|
| 348 |
+
model_format="hf",
|
| 349 |
+
quant_policy=0,
|
| 350 |
+
):
|
| 351 |
+
from lmdeploy import pipeline, ChatTemplateConfig, TurbomindEngineConfig
|
| 352 |
+
|
| 353 |
+
lmdeploy_pipe = pipeline(
|
| 354 |
+
model_path=model,
|
| 355 |
+
backend_config=TurbomindEngineConfig(
|
| 356 |
+
tp=tp, model_format=model_format, quant_policy=quant_policy
|
| 357 |
+
),
|
| 358 |
+
chat_template_config=(
|
| 359 |
+
ChatTemplateConfig(model_name=chat_template) if chat_template else None
|
| 360 |
+
),
|
| 361 |
+
log_level="WARNING",
|
| 362 |
+
)
|
| 363 |
+
return lmdeploy_pipe
|
| 364 |
+
|
| 365 |
+
|
| 366 |
+
@retry(
|
| 367 |
+
stop=stop_after_attempt(3),
|
| 368 |
+
wait=wait_exponential(multiplier=1, min=4, max=10),
|
| 369 |
+
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
| 370 |
+
)
|
| 371 |
+
async def lmdeploy_model_if_cache(
|
| 372 |
+
model,
|
| 373 |
+
prompt,
|
| 374 |
+
system_prompt=None,
|
| 375 |
+
history_messages=[],
|
| 376 |
+
chat_template=None,
|
| 377 |
+
model_format="hf",
|
| 378 |
+
quant_policy=0,
|
| 379 |
+
**kwargs,
|
| 380 |
+
) -> str:
|
| 381 |
+
"""
|
| 382 |
+
Args:
|
| 383 |
+
model (str): The path to the model.
|
| 384 |
+
It could be one of the following options:
|
| 385 |
+
- i) A local directory path of a turbomind model which is
|
| 386 |
+
converted by `lmdeploy convert` command or download
|
| 387 |
+
from ii) and iii).
|
| 388 |
+
- ii) The model_id of a lmdeploy-quantized model hosted
|
| 389 |
+
inside a model repo on huggingface.co, such as
|
| 390 |
+
"InternLM/internlm-chat-20b-4bit",
|
| 391 |
+
"lmdeploy/llama2-chat-70b-4bit", etc.
|
| 392 |
+
- iii) The model_id of a model hosted inside a model repo
|
| 393 |
+
on huggingface.co, such as "internlm/internlm-chat-7b",
|
| 394 |
+
"Qwen/Qwen-7B-Chat ", "baichuan-inc/Baichuan2-7B-Chat"
|
| 395 |
+
and so on.
|
| 396 |
+
chat_template (str): needed when model is a pytorch model on
|
| 397 |
+
huggingface.co, such as "internlm-chat-7b",
|
| 398 |
+
"Qwen-7B-Chat ", "Baichuan2-7B-Chat" and so on,
|
| 399 |
+
and when the model name of local path did not match the original model name in HF.
|
| 400 |
+
tp (int): tensor parallel
|
| 401 |
+
prompt (Union[str, List[str]]): input texts to be completed.
|
| 402 |
+
do_preprocess (bool): whether pre-process the messages. Default to
|
| 403 |
+
True, which means chat_template will be applied.
|
| 404 |
+
skip_special_tokens (bool): Whether or not to remove special tokens
|
| 405 |
+
in the decoding. Default to be True.
|
| 406 |
+
do_sample (bool): Whether or not to use sampling, use greedy decoding otherwise.
|
| 407 |
+
Default to be False, which means greedy decoding will be applied.
|
| 408 |
+
"""
|
| 409 |
+
try:
|
| 410 |
+
import lmdeploy
|
| 411 |
+
from lmdeploy import version_info, GenerationConfig
|
| 412 |
+
except Exception:
|
| 413 |
+
raise ImportError("Please install lmdeploy before initialize lmdeploy backend.")
|
| 414 |
+
kwargs.pop("hashing_kv", None)
|
| 415 |
+
kwargs.pop("response_format", None)
|
| 416 |
+
max_new_tokens = kwargs.pop("max_tokens", 512)
|
| 417 |
+
tp = kwargs.pop("tp", 1)
|
| 418 |
+
skip_special_tokens = kwargs.pop("skip_special_tokens", True)
|
| 419 |
+
do_preprocess = kwargs.pop("do_preprocess", True)
|
| 420 |
+
do_sample = kwargs.pop("do_sample", False)
|
| 421 |
+
gen_params = kwargs
|
| 422 |
+
|
| 423 |
+
version = version_info
|
| 424 |
+
if do_sample is not None and version < (0, 6, 0):
|
| 425 |
+
raise RuntimeError(
|
| 426 |
+
"`do_sample` parameter is not supported by lmdeploy until "
|
| 427 |
+
f"v0.6.0, but currently using lmdeloy {lmdeploy.__version__}"
|
| 428 |
+
)
|
| 429 |
+
else:
|
| 430 |
+
do_sample = True
|
| 431 |
+
gen_params.update(do_sample=do_sample)
|
| 432 |
+
|
| 433 |
+
lmdeploy_pipe = initialize_lmdeploy_pipeline(
|
| 434 |
+
model=model,
|
| 435 |
+
tp=tp,
|
| 436 |
+
chat_template=chat_template,
|
| 437 |
+
model_format=model_format,
|
| 438 |
+
quant_policy=quant_policy,
|
| 439 |
+
log_level="WARNING",
|
| 440 |
+
)
|
| 441 |
+
|
| 442 |
+
messages = []
|
| 443 |
+
if system_prompt:
|
| 444 |
+
messages.append({"role": "system", "content": system_prompt})
|
| 445 |
+
|
| 446 |
+
messages.extend(history_messages)
|
| 447 |
+
messages.append({"role": "user", "content": prompt})
|
| 448 |
+
|
| 449 |
+
gen_config = GenerationConfig(
|
| 450 |
+
skip_special_tokens=skip_special_tokens,
|
| 451 |
+
max_new_tokens=max_new_tokens,
|
| 452 |
+
**gen_params,
|
| 453 |
+
)
|
| 454 |
+
|
| 455 |
+
response = ""
|
| 456 |
+
async for res in lmdeploy_pipe.generate(
|
| 457 |
+
messages,
|
| 458 |
+
gen_config=gen_config,
|
| 459 |
+
do_preprocess=do_preprocess,
|
| 460 |
+
stream_response=False,
|
| 461 |
+
session_id=1,
|
| 462 |
+
):
|
| 463 |
+
response += res.response
|
| 464 |
+
return response
|
| 465 |
+
|
| 466 |
+
|
| 467 |
+
class GPTKeywordExtractionFormat(BaseModel):
|
| 468 |
+
high_level_keywords: List[str]
|
| 469 |
+
low_level_keywords: List[str]
|
| 470 |
+
|
| 471 |
+
|
| 472 |
+
async def openai_complete(
|
| 473 |
+
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
| 474 |
+
) -> Union[str, AsyncIterator[str]]:
|
| 475 |
+
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
| 476 |
+
if keyword_extraction:
|
| 477 |
+
kwargs["response_format"] = "json"
|
| 478 |
+
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
|
| 479 |
+
return await openai_complete_if_cache(
|
| 480 |
+
model_name,
|
| 481 |
+
prompt,
|
| 482 |
+
system_prompt=system_prompt,
|
| 483 |
+
history_messages=history_messages,
|
| 484 |
+
**kwargs,
|
| 485 |
+
)
|
| 486 |
+
|
| 487 |
+
|
| 488 |
+
async def gpt_4o_complete(
|
| 489 |
+
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
| 490 |
+
) -> str:
|
| 491 |
+
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
| 492 |
+
if keyword_extraction:
|
| 493 |
+
kwargs["response_format"] = GPTKeywordExtractionFormat
|
| 494 |
+
return await openai_complete_if_cache(
|
| 495 |
+
"gpt-4o",
|
| 496 |
+
prompt,
|
| 497 |
+
system_prompt=system_prompt,
|
| 498 |
+
history_messages=history_messages,
|
| 499 |
+
**kwargs,
|
| 500 |
+
)
|
| 501 |
+
|
| 502 |
+
|
| 503 |
+
async def gpt_4o_mini_complete(
|
| 504 |
+
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
| 505 |
+
) -> str:
|
| 506 |
+
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
| 507 |
+
if keyword_extraction:
|
| 508 |
+
kwargs["response_format"] = GPTKeywordExtractionFormat
|
| 509 |
+
return await openai_complete_if_cache(
|
| 510 |
+
"gpt-4o-mini",
|
| 511 |
+
prompt,
|
| 512 |
+
system_prompt=system_prompt,
|
| 513 |
+
history_messages=history_messages,
|
| 514 |
+
**kwargs,
|
| 515 |
+
)
|
| 516 |
+
|
| 517 |
+
|
| 518 |
+
async def nvidia_openai_complete(
|
| 519 |
+
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
| 520 |
+
) -> str:
|
| 521 |
+
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
| 522 |
+
result = await openai_complete_if_cache(
|
| 523 |
+
"nvidia/llama-3.1-nemotron-70b-instruct",
|
| 524 |
+
prompt,
|
| 525 |
+
system_prompt=system_prompt,
|
| 526 |
+
history_messages=history_messages,
|
| 527 |
+
base_url="https://integrate.api.nvidia.com/v1",
|
| 528 |
+
**kwargs,
|
| 529 |
+
)
|
| 530 |
+
if keyword_extraction: # TODO: use JSON API
|
| 531 |
+
return locate_json_string_body_from_string(result)
|
| 532 |
+
return result
|
| 533 |
+
|
| 534 |
+
|
| 535 |
+
async def azure_openai_complete(
|
| 536 |
+
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
| 537 |
+
) -> str:
|
| 538 |
+
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
| 539 |
+
result = await azure_openai_complete_if_cache(
|
| 540 |
+
"conversation-4o-mini",
|
| 541 |
+
prompt,
|
| 542 |
+
system_prompt=system_prompt,
|
| 543 |
+
history_messages=history_messages,
|
| 544 |
+
**kwargs,
|
| 545 |
+
)
|
| 546 |
+
if keyword_extraction: # TODO: use JSON API
|
| 547 |
+
return locate_json_string_body_from_string(result)
|
| 548 |
+
return result
|
| 549 |
+
|
| 550 |
+
|
| 551 |
+
async def bedrock_complete(
|
| 552 |
+
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
| 553 |
+
) -> str:
|
| 554 |
+
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
| 555 |
+
result = await bedrock_complete_if_cache(
|
| 556 |
+
"anthropic.claude-3-haiku-20240307-v1:0",
|
| 557 |
+
prompt,
|
| 558 |
+
system_prompt=system_prompt,
|
| 559 |
+
history_messages=history_messages,
|
| 560 |
+
**kwargs,
|
| 561 |
+
)
|
| 562 |
+
if keyword_extraction: # TODO: use JSON API
|
| 563 |
+
return locate_json_string_body_from_string(result)
|
| 564 |
+
return result
|
| 565 |
+
|
| 566 |
+
|
| 567 |
+
async def hf_model_complete(
|
| 568 |
+
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
| 569 |
+
) -> str:
|
| 570 |
+
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
| 571 |
+
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
|
| 572 |
+
result = await hf_model_if_cache(
|
| 573 |
+
model_name,
|
| 574 |
+
prompt,
|
| 575 |
+
system_prompt=system_prompt,
|
| 576 |
+
history_messages=history_messages,
|
| 577 |
+
**kwargs,
|
| 578 |
+
)
|
| 579 |
+
if keyword_extraction: # TODO: use JSON API
|
| 580 |
+
return locate_json_string_body_from_string(result)
|
| 581 |
+
return result
|
| 582 |
+
|
| 583 |
+
|
| 584 |
+
async def ollama_model_complete(
|
| 585 |
+
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
| 586 |
+
) -> Union[str, AsyncIterator[str]]:
|
| 587 |
+
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
| 588 |
+
if keyword_extraction:
|
| 589 |
+
kwargs["format"] = "json"
|
| 590 |
+
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
|
| 591 |
+
return await ollama_model_if_cache(
|
| 592 |
+
model_name,
|
| 593 |
+
prompt,
|
| 594 |
+
system_prompt=system_prompt,
|
| 595 |
+
history_messages=history_messages,
|
| 596 |
+
**kwargs,
|
| 597 |
+
)
|
| 598 |
+
|
| 599 |
+
|
| 600 |
+
@retry(
|
| 601 |
+
stop=stop_after_attempt(3),
|
| 602 |
+
wait=wait_exponential(multiplier=1, min=4, max=10),
|
| 603 |
+
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
| 604 |
+
)
|
| 605 |
+
async def zhipu_complete_if_cache(
|
| 606 |
+
prompt: Union[str, List[Dict[str, str]]],
|
| 607 |
+
model: str = "glm-4-flashx",
|
| 608 |
+
api_key: Optional[str] = None,
|
| 609 |
+
system_prompt: Optional[str] = None,
|
| 610 |
+
history_messages: List[Dict[str, str]] = [],
|
| 611 |
+
**kwargs,
|
| 612 |
+
) -> str:
|
| 613 |
+
|
| 614 |
+
try:
|
| 615 |
+
from zhipuai import ZhipuAI
|
| 616 |
+
except ImportError:
|
| 617 |
+
raise ImportError("Please install zhipuai before initialize zhipuai backend.")
|
| 618 |
+
|
| 619 |
+
if api_key:
|
| 620 |
+
client = ZhipuAI(api_key=api_key)
|
| 621 |
+
else:
|
| 622 |
+
client = ZhipuAI()
|
| 623 |
+
|
| 624 |
+
messages = []
|
| 625 |
+
|
| 626 |
+
if not system_prompt:
|
| 627 |
+
system_prompt = "You are a helpful assistant. 注意内容里的敏感词用***替换。"
|
| 628 |
+
|
| 629 |
+
|
| 630 |
+
if system_prompt:
|
| 631 |
+
messages.append({"role": "system", "content": system_prompt})
|
| 632 |
+
messages.extend(history_messages)
|
| 633 |
+
messages.append({"role": "user", "content": prompt})
|
| 634 |
+
|
| 635 |
+
|
| 636 |
+
logger.debug("===== Query Input to LLM =====")
|
| 637 |
+
logger.debug(f"Query: {prompt}")
|
| 638 |
+
logger.debug(f"System prompt: {system_prompt}")
|
| 639 |
+
|
| 640 |
+
|
| 641 |
+
kwargs = {
|
| 642 |
+
k: v for k, v in kwargs.items() if k not in ["hashing_kv", "keyword_extraction"]
|
| 643 |
+
}
|
| 644 |
+
|
| 645 |
+
response = client.chat.completions.create(model=model, messages=messages, **kwargs)
|
| 646 |
+
|
| 647 |
+
return response.choices[0].message.content
|
| 648 |
+
|
| 649 |
+
|
| 650 |
+
async def zhipu_complete(
|
| 651 |
+
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
| 652 |
+
):
|
| 653 |
+
|
| 654 |
+
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
| 655 |
+
|
| 656 |
+
if keyword_extraction:
|
| 657 |
+
extraction_prompt = """You are a helpful assistant that extracts keywords from text.
|
| 658 |
+
Please analyze the content and extract two types of keywords:
|
| 659 |
+
1. High-level keywords: Important concepts and main themes
|
| 660 |
+
2. Low-level keywords: Specific details and supporting elements
|
| 661 |
+
|
| 662 |
+
Return your response in this exact JSON format:
|
| 663 |
+
{
|
| 664 |
+
"high_level_keywords": ["keyword1", "keyword2"],
|
| 665 |
+
"low_level_keywords": ["keyword1", "keyword2", "keyword3"]
|
| 666 |
+
}
|
| 667 |
+
|
| 668 |
+
Only return the JSON, no other text."""
|
| 669 |
+
|
| 670 |
+
|
| 671 |
+
if system_prompt:
|
| 672 |
+
system_prompt = f"{system_prompt}\n\n{extraction_prompt}"
|
| 673 |
+
else:
|
| 674 |
+
system_prompt = extraction_prompt
|
| 675 |
+
|
| 676 |
+
try:
|
| 677 |
+
response = await zhipu_complete_if_cache(
|
| 678 |
+
prompt=prompt,
|
| 679 |
+
system_prompt=system_prompt,
|
| 680 |
+
history_messages=history_messages,
|
| 681 |
+
**kwargs,
|
| 682 |
+
)
|
| 683 |
+
|
| 684 |
+
|
| 685 |
+
try:
|
| 686 |
+
data = json.loads(response)
|
| 687 |
+
return GPTKeywordExtractionFormat(
|
| 688 |
+
high_level_keywords=data.get("high_level_keywords", []),
|
| 689 |
+
low_level_keywords=data.get("low_level_keywords", []),
|
| 690 |
+
)
|
| 691 |
+
except json.JSONDecodeError:
|
| 692 |
+
|
| 693 |
+
match = re.search(r"\{[\s\S]*\}", response)
|
| 694 |
+
if match:
|
| 695 |
+
try:
|
| 696 |
+
data = json.loads(match.group())
|
| 697 |
+
return GPTKeywordExtractionFormat(
|
| 698 |
+
high_level_keywords=data.get("high_level_keywords", []),
|
| 699 |
+
low_level_keywords=data.get("low_level_keywords", []),
|
| 700 |
+
)
|
| 701 |
+
except json.JSONDecodeError:
|
| 702 |
+
pass
|
| 703 |
+
|
| 704 |
+
|
| 705 |
+
logger.warning(
|
| 706 |
+
f"Failed to parse keyword extraction response: {response}"
|
| 707 |
+
)
|
| 708 |
+
return GPTKeywordExtractionFormat(
|
| 709 |
+
high_level_keywords=[], low_level_keywords=[]
|
| 710 |
+
)
|
| 711 |
+
except Exception as e:
|
| 712 |
+
logger.error(f"Error during keyword extraction: {str(e)}")
|
| 713 |
+
return GPTKeywordExtractionFormat(
|
| 714 |
+
high_level_keywords=[], low_level_keywords=[]
|
| 715 |
+
)
|
| 716 |
+
else:
|
| 717 |
+
return await zhipu_complete_if_cache(
|
| 718 |
+
prompt=prompt,
|
| 719 |
+
system_prompt=system_prompt,
|
| 720 |
+
history_messages=history_messages,
|
| 721 |
+
**kwargs,
|
| 722 |
+
)
|
| 723 |
+
|
| 724 |
+
|
| 725 |
+
@wrap_embedding_func_with_attrs(embedding_dim=1024, max_token_size=8192)
|
| 726 |
+
@retry(
|
| 727 |
+
stop=stop_after_attempt(3),
|
| 728 |
+
wait=wait_exponential(multiplier=1, min=4, max=60),
|
| 729 |
+
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
| 730 |
+
)
|
| 731 |
+
async def zhipu_embedding(
|
| 732 |
+
texts: list[str], model: str = "embedding-3", api_key: str = None, **kwargs
|
| 733 |
+
) -> np.ndarray:
|
| 734 |
+
|
| 735 |
+
try:
|
| 736 |
+
from zhipuai import ZhipuAI
|
| 737 |
+
except ImportError:
|
| 738 |
+
raise ImportError("Please install zhipuai before initialize zhipuai backend.")
|
| 739 |
+
if api_key:
|
| 740 |
+
client = ZhipuAI(api_key=api_key)
|
| 741 |
+
else:
|
| 742 |
+
client = ZhipuAI()
|
| 743 |
+
|
| 744 |
+
if isinstance(texts, str):
|
| 745 |
+
texts = [texts]
|
| 746 |
+
|
| 747 |
+
embeddings = []
|
| 748 |
+
for text in texts:
|
| 749 |
+
try:
|
| 750 |
+
response = client.embeddings.create(model=model, input=[text], **kwargs)
|
| 751 |
+
embeddings.append(response.data[0].embedding)
|
| 752 |
+
except Exception as e:
|
| 753 |
+
raise Exception(f"Error calling ChatGLM Embedding API: {str(e)}")
|
| 754 |
+
|
| 755 |
+
return np.array(embeddings)
|
| 756 |
+
|
| 757 |
+
|
| 758 |
+
@wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8192)
|
| 759 |
+
@retry(
|
| 760 |
+
stop=stop_after_attempt(3),
|
| 761 |
+
wait=wait_exponential(multiplier=1, min=4, max=60),
|
| 762 |
+
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
| 763 |
+
)
|
| 764 |
+
async def openai_embedding(
|
| 765 |
+
texts: list[str],
|
| 766 |
+
model: str = "text-embedding-3-small",
|
| 767 |
+
base_url="https://api.openai.com/v1",
|
| 768 |
+
api_key="",
|
| 769 |
+
) -> np.ndarray:
|
| 770 |
+
if api_key:
|
| 771 |
+
os.environ["OPENAI_API_KEY"] = api_key
|
| 772 |
+
|
| 773 |
+
openai_async_client = (
|
| 774 |
+
AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
|
| 775 |
+
)
|
| 776 |
+
response = await openai_async_client.embeddings.create(
|
| 777 |
+
model=model, input=texts, encoding_format="float"
|
| 778 |
+
)
|
| 779 |
+
return np.array([dp.embedding for dp in response.data])
|
| 780 |
+
|
| 781 |
+
|
| 782 |
+
async def fetch_data(url, headers, data):
|
| 783 |
+
async with aiohttp.ClientSession() as session:
|
| 784 |
+
async with session.post(url, headers=headers, json=data) as response:
|
| 785 |
+
response_json = await response.json()
|
| 786 |
+
data_list = response_json.get("data", [])
|
| 787 |
+
return data_list
|
| 788 |
+
|
| 789 |
+
|
| 790 |
+
async def jina_embedding(
|
| 791 |
+
texts: list[str],
|
| 792 |
+
dimensions: int = 1024,
|
| 793 |
+
late_chunking: bool = False,
|
| 794 |
+
base_url: str = None,
|
| 795 |
+
api_key: str = None,
|
| 796 |
+
) -> np.ndarray:
|
| 797 |
+
if api_key:
|
| 798 |
+
os.environ["JINA_API_KEY"] = api_key
|
| 799 |
+
url = "https://api.jina.ai/v1/embeddings" if not base_url else base_url
|
| 800 |
+
headers = {
|
| 801 |
+
"Content-Type": "application/json",
|
| 802 |
+
"Authorization": f"Bearer {os.environ['JINA_API_KEY']}",
|
| 803 |
+
}
|
| 804 |
+
data = {
|
| 805 |
+
"model": "jina-embeddings-v3",
|
| 806 |
+
"normalized": True,
|
| 807 |
+
"embedding_type": "float",
|
| 808 |
+
"dimensions": f"{dimensions}",
|
| 809 |
+
"late_chunking": late_chunking,
|
| 810 |
+
"input": texts,
|
| 811 |
+
}
|
| 812 |
+
data_list = await fetch_data(url, headers, data)
|
| 813 |
+
return np.array([dp["embedding"] for dp in data_list])
|
| 814 |
+
|
| 815 |
+
|
| 816 |
+
@wrap_embedding_func_with_attrs(embedding_dim=2048, max_token_size=512)
|
| 817 |
+
@retry(
|
| 818 |
+
stop=stop_after_attempt(3),
|
| 819 |
+
wait=wait_exponential(multiplier=1, min=4, max=60),
|
| 820 |
+
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
| 821 |
+
)
|
| 822 |
+
async def nvidia_openai_embedding(
|
| 823 |
+
texts: list[str],
|
| 824 |
+
model: str = "nvidia/llama-3.2-nv-embedqa-1b-v1",
|
| 825 |
+
base_url: str = "https://integrate.api.nvidia.com/v1",
|
| 826 |
+
api_key: str = None,
|
| 827 |
+
input_type: str = "passage",
|
| 828 |
+
trunc: str = "NONE",
|
| 829 |
+
encode: str = "float",
|
| 830 |
+
) -> np.ndarray:
|
| 831 |
+
if api_key:
|
| 832 |
+
os.environ["OPENAI_API_KEY"] = api_key
|
| 833 |
+
|
| 834 |
+
openai_async_client = (
|
| 835 |
+
AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
|
| 836 |
+
)
|
| 837 |
+
response = await openai_async_client.embeddings.create(
|
| 838 |
+
model=model,
|
| 839 |
+
input=texts,
|
| 840 |
+
encoding_format=encode,
|
| 841 |
+
extra_body={"input_type": input_type, "truncate": trunc},
|
| 842 |
+
)
|
| 843 |
+
return np.array([dp.embedding for dp in response.data])
|
| 844 |
+
|
| 845 |
+
|
| 846 |
+
@wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8191)
|
| 847 |
+
@retry(
|
| 848 |
+
stop=stop_after_attempt(3),
|
| 849 |
+
wait=wait_exponential(multiplier=1, min=4, max=10),
|
| 850 |
+
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
| 851 |
+
)
|
| 852 |
+
async def azure_openai_embedding(
|
| 853 |
+
texts: list[str],
|
| 854 |
+
model: str = "text-embedding-3-small",
|
| 855 |
+
base_url: str = None,
|
| 856 |
+
api_key: str = None,
|
| 857 |
+
api_version: str = None,
|
| 858 |
+
) -> np.ndarray:
|
| 859 |
+
if api_key:
|
| 860 |
+
os.environ["AZURE_OPENAI_API_KEY"] = api_key
|
| 861 |
+
if base_url:
|
| 862 |
+
os.environ["AZURE_OPENAI_ENDPOINT"] = base_url
|
| 863 |
+
if api_version:
|
| 864 |
+
os.environ["AZURE_OPENAI_API_VERSION"] = api_version
|
| 865 |
+
|
| 866 |
+
openai_async_client = AsyncAzureOpenAI(
|
| 867 |
+
azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
|
| 868 |
+
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
|
| 869 |
+
api_version=os.getenv("AZURE_OPENAI_API_VERSION"),
|
| 870 |
+
)
|
| 871 |
+
|
| 872 |
+
response = await openai_async_client.embeddings.create(
|
| 873 |
+
model=model, input=texts, encoding_format="float"
|
| 874 |
+
)
|
| 875 |
+
return np.array([dp.embedding for dp in response.data])
|
| 876 |
+
|
| 877 |
+
|
| 878 |
+
@retry(
|
| 879 |
+
stop=stop_after_attempt(3),
|
| 880 |
+
wait=wait_exponential(multiplier=1, min=4, max=60),
|
| 881 |
+
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
| 882 |
+
)
|
| 883 |
+
async def siliconcloud_embedding(
|
| 884 |
+
texts: list[str],
|
| 885 |
+
model: str = "netease-youdao/bce-embedding-base_v1",
|
| 886 |
+
base_url: str = "https://api.siliconflow.cn/v1/embeddings",
|
| 887 |
+
max_token_size: int = 512,
|
| 888 |
+
api_key: str = None,
|
| 889 |
+
) -> np.ndarray:
|
| 890 |
+
if api_key and not api_key.startswith("Bearer "):
|
| 891 |
+
api_key = "Bearer " + api_key
|
| 892 |
+
|
| 893 |
+
headers = {"Authorization": api_key, "Content-Type": "application/json"}
|
| 894 |
+
|
| 895 |
+
truncate_texts = [text[0:max_token_size] for text in texts]
|
| 896 |
+
|
| 897 |
+
payload = {"model": model, "input": truncate_texts, "encoding_format": "base64"}
|
| 898 |
+
|
| 899 |
+
base64_strings = []
|
| 900 |
+
async with aiohttp.ClientSession() as session:
|
| 901 |
+
async with session.post(base_url, headers=headers, json=payload) as response:
|
| 902 |
+
content = await response.json()
|
| 903 |
+
if "code" in content:
|
| 904 |
+
raise ValueError(content)
|
| 905 |
+
base64_strings = [item["embedding"] for item in content["data"]]
|
| 906 |
+
|
| 907 |
+
embeddings = []
|
| 908 |
+
for string in base64_strings:
|
| 909 |
+
decode_bytes = base64.b64decode(string)
|
| 910 |
+
n = len(decode_bytes) // 4
|
| 911 |
+
float_array = struct.unpack("<" + "f" * n, decode_bytes)
|
| 912 |
+
embeddings.append(float_array)
|
| 913 |
+
return np.array(embeddings)
|
| 914 |
+
|
| 915 |
+
|
| 916 |
+
|
| 917 |
+
async def bedrock_embedding(
|
| 918 |
+
texts: list[str],
|
| 919 |
+
model: str = "amazon.titan-embed-text-v2:0",
|
| 920 |
+
aws_access_key_id=None,
|
| 921 |
+
aws_secret_access_key=None,
|
| 922 |
+
aws_session_token=None,
|
| 923 |
+
) -> np.ndarray:
|
| 924 |
+
os.environ["AWS_ACCESS_KEY_ID"] = os.environ.get(
|
| 925 |
+
"AWS_ACCESS_KEY_ID", aws_access_key_id
|
| 926 |
+
)
|
| 927 |
+
os.environ["AWS_SECRET_ACCESS_KEY"] = os.environ.get(
|
| 928 |
+
"AWS_SECRET_ACCESS_KEY", aws_secret_access_key
|
| 929 |
+
)
|
| 930 |
+
os.environ["AWS_SESSION_TOKEN"] = os.environ.get(
|
| 931 |
+
"AWS_SESSION_TOKEN", aws_session_token
|
| 932 |
+
)
|
| 933 |
+
|
| 934 |
+
session = aioboto3.Session()
|
| 935 |
+
async with session.client("bedrock-runtime") as bedrock_async_client:
|
| 936 |
+
if (model_provider := model.split(".")[0]) == "amazon":
|
| 937 |
+
embed_texts = []
|
| 938 |
+
for text in texts:
|
| 939 |
+
if "v2" in model:
|
| 940 |
+
body = json.dumps(
|
| 941 |
+
{
|
| 942 |
+
"inputText": text,
|
| 943 |
+
|
| 944 |
+
"embeddingTypes": ["float"],
|
| 945 |
+
}
|
| 946 |
+
)
|
| 947 |
+
elif "v1" in model:
|
| 948 |
+
body = json.dumps({"inputText": text})
|
| 949 |
+
else:
|
| 950 |
+
raise ValueError(f"Model {model} is not supported!")
|
| 951 |
+
|
| 952 |
+
response = await bedrock_async_client.invoke_model(
|
| 953 |
+
modelId=model,
|
| 954 |
+
body=body,
|
| 955 |
+
accept="application/json",
|
| 956 |
+
contentType="application/json",
|
| 957 |
+
)
|
| 958 |
+
|
| 959 |
+
response_body = await response.get("body").json()
|
| 960 |
+
|
| 961 |
+
embed_texts.append(response_body["embedding"])
|
| 962 |
+
elif model_provider == "cohere":
|
| 963 |
+
body = json.dumps(
|
| 964 |
+
{"texts": texts, "input_type": "search_document", "truncate": "NONE"}
|
| 965 |
+
)
|
| 966 |
+
|
| 967 |
+
response = await bedrock_async_client.invoke_model(
|
| 968 |
+
model=model,
|
| 969 |
+
body=body,
|
| 970 |
+
accept="application/json",
|
| 971 |
+
contentType="application/json",
|
| 972 |
+
)
|
| 973 |
+
|
| 974 |
+
response_body = json.loads(response.get("body").read())
|
| 975 |
+
|
| 976 |
+
embed_texts = response_body["embeddings"]
|
| 977 |
+
else:
|
| 978 |
+
raise ValueError(f"Model provider '{model_provider}' is not supported!")
|
| 979 |
+
|
| 980 |
+
return np.array(embed_texts)
|
| 981 |
+
|
| 982 |
+
|
| 983 |
+
async def hf_embedding(texts: list[str], tokenizer, embed_model) -> np.ndarray:
|
| 984 |
+
device = next(embed_model.parameters()).device
|
| 985 |
+
input_ids = tokenizer(
|
| 986 |
+
texts, return_tensors="pt", padding=True, truncation=True
|
| 987 |
+
).input_ids.to(device)
|
| 988 |
+
with torch.no_grad():
|
| 989 |
+
outputs = embed_model(input_ids)
|
| 990 |
+
embeddings = outputs.last_hidden_state.mean(dim=1)
|
| 991 |
+
if embeddings.dtype == torch.bfloat16:
|
| 992 |
+
return embeddings.detach().to(torch.float32).cpu().numpy()
|
| 993 |
+
else:
|
| 994 |
+
return embeddings.detach().cpu().numpy()
|
| 995 |
+
|
| 996 |
+
|
| 997 |
+
async def ollama_embedding(texts: list[str], embed_model, **kwargs) -> np.ndarray:
|
| 998 |
+
"""
|
| 999 |
+
Deprecated in favor of `embed`.
|
| 1000 |
+
"""
|
| 1001 |
+
embed_text = []
|
| 1002 |
+
ollama_client = ollama.Client(**kwargs)
|
| 1003 |
+
for text in texts:
|
| 1004 |
+
data = ollama_client.embeddings(model=embed_model, prompt=text)
|
| 1005 |
+
embed_text.append(data["embedding"])
|
| 1006 |
+
|
| 1007 |
+
return embed_text
|
| 1008 |
+
|
| 1009 |
+
|
| 1010 |
+
async def ollama_embed(texts: list[str], embed_model, **kwargs) -> np.ndarray:
|
| 1011 |
+
ollama_client = ollama.Client(**kwargs)
|
| 1012 |
+
data = ollama_client.embed(model=embed_model, input=texts)
|
| 1013 |
+
return data["embeddings"]
|
| 1014 |
+
|
| 1015 |
+
|
| 1016 |
+
class Model(BaseModel):
|
| 1017 |
+
"""
|
| 1018 |
+
This is a Pydantic model class named 'Model' that is used to define a custom language model.
|
| 1019 |
+
|
| 1020 |
+
Attributes:
|
| 1021 |
+
gen_func (Callable[[Any], str]): A callable function that generates the response from the language model.
|
| 1022 |
+
The function should take any argument and return a string.
|
| 1023 |
+
kwargs (Dict[str, Any]): A dictionary that contains the arguments to pass to the callable function.
|
| 1024 |
+
This could include parameters such as the model name, API key, etc.
|
| 1025 |
+
|
| 1026 |
+
Example usage:
|
| 1027 |
+
Model(gen_func=openai_complete_if_cache, kwargs={"model": "gpt-4", "api_key": os.environ["OPENAI_API_KEY_1"]})
|
| 1028 |
+
|
| 1029 |
+
In this example, 'openai_complete_if_cache' is the callable function that generates the response from the OpenAI model.
|
| 1030 |
+
The 'kwargs' dictionary contains the model name and API key to be passed to the function.
|
| 1031 |
+
"""
|
| 1032 |
+
|
| 1033 |
+
gen_func: Callable[[Any], str] = Field(
|
| 1034 |
+
...,
|
| 1035 |
+
description="A function that generates the response from the llm. The response must be a string",
|
| 1036 |
+
)
|
| 1037 |
+
kwargs: Dict[str, Any] = Field(
|
| 1038 |
+
...,
|
| 1039 |
+
description="The arguments to pass to the callable function. Eg. the api key, model name, etc",
|
| 1040 |
+
)
|
| 1041 |
+
|
| 1042 |
+
class Config:
|
| 1043 |
+
arbitrary_types_allowed = True
|
| 1044 |
+
|
| 1045 |
+
|
| 1046 |
+
class MultiModel:
|
| 1047 |
+
"""
|
| 1048 |
+
Distributes the load across multiple language models. Useful for circumventing low rate limits with certain api providers especially if you are on the free tier.
|
| 1049 |
+
Could also be used for spliting across diffrent models or providers.
|
| 1050 |
+
|
| 1051 |
+
Attributes:
|
| 1052 |
+
models (List[Model]): A list of language models to be used.
|
| 1053 |
+
|
| 1054 |
+
Usage example:
|
| 1055 |
+
```python
|
| 1056 |
+
models = [
|
| 1057 |
+
Model(gen_func=openai_complete_if_cache, kwargs={"model": "gpt-4", "api_key": os.environ["OPENAI_API_KEY_1"]}),
|
| 1058 |
+
Model(gen_func=openai_complete_if_cache, kwargs={"model": "gpt-4", "api_key": os.environ["OPENAI_API_KEY_2"]}),
|
| 1059 |
+
Model(gen_func=openai_complete_if_cache, kwargs={"model": "gpt-4", "api_key": os.environ["OPENAI_API_KEY_3"]}),
|
| 1060 |
+
Model(gen_func=openai_complete_if_cache, kwargs={"model": "gpt-4", "api_key": os.environ["OPENAI_API_KEY_4"]}),
|
| 1061 |
+
Model(gen_func=openai_complete_if_cache, kwargs={"model": "gpt-4", "api_key": os.environ["OPENAI_API_KEY_5"]}),
|
| 1062 |
+
]
|
| 1063 |
+
multi_model = MultiModel(models)
|
| 1064 |
+
rag = LightRAG(
|
| 1065 |
+
llm_model_func=multi_model.llm_model_func
|
| 1066 |
+
/ ..other args
|
| 1067 |
+
)
|
| 1068 |
+
```
|
| 1069 |
+
"""
|
| 1070 |
+
|
| 1071 |
+
def __init__(self, models: List[Model]):
|
| 1072 |
+
self._models = models
|
| 1073 |
+
self._current_model = 0
|
| 1074 |
+
|
| 1075 |
+
def _next_model(self):
|
| 1076 |
+
self._current_model = (self._current_model + 1) % len(self._models)
|
| 1077 |
+
return self._models[self._current_model]
|
| 1078 |
+
|
| 1079 |
+
async def llm_model_func(
|
| 1080 |
+
self, prompt, system_prompt=None, history_messages=[], **kwargs
|
| 1081 |
+
) -> str:
|
| 1082 |
+
kwargs.pop("model", None)
|
| 1083 |
+
kwargs.pop("keyword_extraction", None)
|
| 1084 |
+
kwargs.pop("mode", None)
|
| 1085 |
+
next_model = self._next_model()
|
| 1086 |
+
args = dict(
|
| 1087 |
+
prompt=prompt,
|
| 1088 |
+
system_prompt=system_prompt,
|
| 1089 |
+
history_messages=history_messages,
|
| 1090 |
+
**kwargs,
|
| 1091 |
+
**next_model.kwargs,
|
| 1092 |
+
)
|
| 1093 |
+
|
| 1094 |
+
return await next_model.gen_func(**args)
|
| 1095 |
+
|
| 1096 |
+
|
| 1097 |
+
if __name__ == "__main__":
|
| 1098 |
+
import asyncio
|
| 1099 |
+
|
| 1100 |
+
async def main():
|
| 1101 |
+
result = await gpt_4o_mini_complete("How are you?")
|
| 1102 |
+
print(result)
|
| 1103 |
+
|
| 1104 |
+
asyncio.run(main())
|