Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
import googleapiclient.errors
|
4 |
+
import googleapiclient.discovery
|
5 |
+
import os
|
6 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
7 |
+
import torch
|
8 |
+
|
9 |
+
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
11 |
+
'nlptown/bert-base-multilingual-uncased-sentiment')
|
12 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
13 |
+
'nlptown/bert-base-multilingual-uncased-sentiment')
|
14 |
+
|
15 |
+
load_dotenv()
|
16 |
+
api_key = os.getenv("API_KEY")
|
17 |
+
|
18 |
+
|
19 |
+
def get_comments(youtube, **kwargs):
|
20 |
+
comments = []
|
21 |
+
results = youtube.commentThreads().list(**kwargs).execute()
|
22 |
+
|
23 |
+
while results:
|
24 |
+
for item in results['items']:
|
25 |
+
comment = item['snippet']['topLevelComment']['snippet']['textDisplay']
|
26 |
+
comments.append(comment)
|
27 |
+
|
28 |
+
# check if there are more comments
|
29 |
+
if 'nextPageToken' in results:
|
30 |
+
kwargs['pageToken'] = results['nextPageToken']
|
31 |
+
results = youtube.commentThreads().list(**kwargs).execute()
|
32 |
+
else:
|
33 |
+
break
|
34 |
+
|
35 |
+
return comments
|
36 |
+
|
37 |
+
|
38 |
+
def get_video_comments(video_id, api_key):
|
39 |
+
os.environ["OAUTHLIB_INSECURE_TRANSPORT"] = "1"
|
40 |
+
|
41 |
+
youtube = googleapiclient.discovery.build(
|
42 |
+
"youtube", "v3", developerKey=api_key)
|
43 |
+
|
44 |
+
comments = get_comments(youtube, part="snippet",
|
45 |
+
videoId=video_id, textFormat="plainText")
|
46 |
+
return comments
|
47 |
+
|
48 |
+
|
49 |
+
def makevideoid(url):
|
50 |
+
if "?v=" in url:
|
51 |
+
video_id = url.split("=")[1].split("&")[0]
|
52 |
+
return video_id
|
53 |
+
else:
|
54 |
+
video_id = url.split("/")[3].split("?")[0]
|
55 |
+
return video_id
|
56 |
+
|
57 |
+
|
58 |
+
st.title("YouTube Comment Sentiment Analysis")
|
59 |
+
|
60 |
+
# User input for video URL
|
61 |
+
video_url = st.text_input("Enter YouTube Video URL")
|
62 |
+
|
63 |
+
|
64 |
+
# Create a radio button
|
65 |
+
|
66 |
+
|
67 |
+
# Content to be displayed based on the radio button state
|
68 |
+
|
69 |
+
|
70 |
+
if video_url:
|
71 |
+
|
72 |
+
videoid = makevideoid(video_url)
|
73 |
+
comments = get_video_comments(videoid, api_key)
|
74 |
+
|
75 |
+
# Display comments and sentiment analysis
|
76 |
+
num = 0
|
77 |
+
with st.expander("Comment with sentiment analysis"):
|
78 |
+
for i, comment in enumerate(comments, 1):
|
79 |
+
tokens = tokenizer.encode(
|
80 |
+
comment, return_tensors='pt', max_length=512)
|
81 |
+
result = model(tokens)
|
82 |
+
sentiment = int(torch.argmax(result.logits)) + 1
|
83 |
+
num += sentiment
|
84 |
+
|
85 |
+
st.write(f"Comment {i}: {comment} (Sentiment: {sentiment})")
|
86 |
+
st.title(num/len(comments))
|