Spaces:
Sleeping
Sleeping
# Copyright (c) 2022 NVIDIA CORPORATION. | |
# Licensed under the MIT license. | |
# Adapted from https://github.com/jik876/hifi-gan under the MIT license. | |
# LICENSE is in incl_licenses directory. | |
import math | |
import os | |
import random | |
import torch | |
import torch.utils.data | |
import numpy as np | |
from librosa.util import normalize | |
from scipy.io.wavfile import read | |
from librosa.filters import mel as librosa_mel_fn | |
import pathlib | |
from tqdm import tqdm | |
MAX_WAV_VALUE = 32768.0 | |
def load_wav(full_path, sr_target): | |
sampling_rate, data = read(full_path) | |
if sampling_rate != sr_target: | |
raise RuntimeError("Sampling rate of the file {} is {} Hz, but the model requires {} Hz". | |
format(full_path, sampling_rate, sr_target)) | |
return data, sampling_rate | |
def dynamic_range_compression(x, C=1, clip_val=1e-5): | |
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C) | |
def dynamic_range_decompression(x, C=1): | |
return np.exp(x) / C | |
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): | |
return torch.log(torch.clamp(x, min=clip_val) * C) | |
def dynamic_range_decompression_torch(x, C=1): | |
return torch.exp(x) / C | |
def spectral_normalize_torch(magnitudes): | |
output = dynamic_range_compression_torch(magnitudes) | |
return output | |
def spectral_de_normalize_torch(magnitudes): | |
output = dynamic_range_decompression_torch(magnitudes) | |
return output | |
mel_basis = {} | |
hann_window = {} | |
def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False): | |
if torch.min(y) < -1.: | |
print('min value is ', torch.min(y)) | |
if torch.max(y) > 1.: | |
print('max value is ', torch.max(y)) | |
global mel_basis, hann_window | |
if fmax not in mel_basis: | |
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax) | |
mel_basis[str(fmax)+'_'+str(y.device)] = torch.from_numpy(mel).float().to(y.device) | |
hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device) | |
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect') | |
y = y.squeeze(1) | |
# complex tensor as default, then use view_as_real for future pytorch compatibility | |
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[str(y.device)], | |
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=True) | |
spec = torch.view_as_real(spec) | |
spec = torch.sqrt(spec.pow(2).sum(-1)+(1e-9)) | |
spec = torch.matmul(mel_basis[str(fmax)+'_'+str(y.device)], spec) | |
spec = spectral_normalize_torch(spec) | |
return spec | |
def get_dataset_filelist(a): | |
with open(a.input_training_file, 'r', encoding='utf-8') as fi: | |
training_files = [os.path.join(a.input_wavs_dir, x.split('|')[0] + '.wav') | |
for x in fi.read().split('\n') if len(x) > 0] | |
print("first training file: {}".format(training_files[0])) | |
with open(a.input_validation_file, 'r', encoding='utf-8') as fi: | |
validation_files = [os.path.join(a.input_wavs_dir, x.split('|')[0] + '.wav') | |
for x in fi.read().split('\n') if len(x) > 0] | |
print("first validation file: {}".format(validation_files[0])) | |
list_unseen_validation_files = [] | |
for i in range(len(a.list_input_unseen_validation_file)): | |
with open(a.list_input_unseen_validation_file[i], 'r', encoding='utf-8') as fi: | |
unseen_validation_files = [os.path.join(a.list_input_unseen_wavs_dir[i], x.split('|')[0] + '.wav') | |
for x in fi.read().split('\n') if len(x) > 0] | |
print("first unseen {}th validation fileset: {}".format(i, unseen_validation_files[0])) | |
list_unseen_validation_files.append(unseen_validation_files) | |
return training_files, validation_files, list_unseen_validation_files | |
class MelDataset(torch.utils.data.Dataset): | |
def __init__(self, training_files, hparams, segment_size, n_fft, num_mels, | |
hop_size, win_size, sampling_rate, fmin, fmax, split=True, shuffle=True, n_cache_reuse=1, | |
device=None, fmax_loss=None, fine_tuning=False, base_mels_path=None, is_seen=True): | |
self.audio_files = training_files | |
random.seed(1234) | |
if shuffle: | |
random.shuffle(self.audio_files) | |
self.hparams = hparams | |
self.is_seen = is_seen | |
if self.is_seen: | |
self.name = pathlib.Path(self.audio_files[0]).parts[0] | |
else: | |
self.name = '-'.join(pathlib.Path(self.audio_files[0]).parts[:2]).strip("/") | |
self.segment_size = segment_size | |
self.sampling_rate = sampling_rate | |
self.split = split | |
self.n_fft = n_fft | |
self.num_mels = num_mels | |
self.hop_size = hop_size | |
self.win_size = win_size | |
self.fmin = fmin | |
self.fmax = fmax | |
self.fmax_loss = fmax_loss | |
self.cached_wav = None | |
self.n_cache_reuse = n_cache_reuse | |
self._cache_ref_count = 0 | |
self.device = device | |
self.fine_tuning = fine_tuning | |
self.base_mels_path = base_mels_path | |
print("INFO: checking dataset integrity...") | |
for i in tqdm(range(len(self.audio_files))): | |
assert os.path.exists(self.audio_files[i]), "{} not found".format(self.audio_files[i]) | |
def __getitem__(self, index): | |
filename = self.audio_files[index] | |
if self._cache_ref_count == 0: | |
audio, sampling_rate = load_wav(filename, self.sampling_rate) | |
audio = audio / MAX_WAV_VALUE | |
if not self.fine_tuning: | |
audio = normalize(audio) * 0.95 | |
self.cached_wav = audio | |
if sampling_rate != self.sampling_rate: | |
raise ValueError("{} SR doesn't match target {} SR".format( | |
sampling_rate, self.sampling_rate)) | |
self._cache_ref_count = self.n_cache_reuse | |
else: | |
audio = self.cached_wav | |
self._cache_ref_count -= 1 | |
audio = torch.FloatTensor(audio) | |
audio = audio.unsqueeze(0) | |
if not self.fine_tuning: | |
if self.split: | |
if audio.size(1) >= self.segment_size: | |
max_audio_start = audio.size(1) - self.segment_size | |
audio_start = random.randint(0, max_audio_start) | |
audio = audio[:, audio_start:audio_start+self.segment_size] | |
else: | |
audio = torch.nn.functional.pad(audio, (0, self.segment_size - audio.size(1)), 'constant') | |
mel = mel_spectrogram(audio, self.n_fft, self.num_mels, | |
self.sampling_rate, self.hop_size, self.win_size, self.fmin, self.fmax, | |
center=False) | |
else: # validation step | |
# match audio length to self.hop_size * n for evaluation | |
if (audio.size(1) % self.hop_size) != 0: | |
audio = audio[:, :-(audio.size(1) % self.hop_size)] | |
mel = mel_spectrogram(audio, self.n_fft, self.num_mels, | |
self.sampling_rate, self.hop_size, self.win_size, self.fmin, self.fmax, | |
center=False) | |
assert audio.shape[1] == mel.shape[2] * self.hop_size, "audio shape {} mel shape {}".format(audio.shape, mel.shape) | |
else: | |
mel = np.load( | |
os.path.join(self.base_mels_path, os.path.splitext(os.path.split(filename)[-1])[0] + '.npy')) | |
mel = torch.from_numpy(mel) | |
if len(mel.shape) < 3: | |
mel = mel.unsqueeze(0) | |
if self.split: | |
frames_per_seg = math.ceil(self.segment_size / self.hop_size) | |
if audio.size(1) >= self.segment_size: | |
mel_start = random.randint(0, mel.size(2) - frames_per_seg - 1) | |
mel = mel[:, :, mel_start:mel_start + frames_per_seg] | |
audio = audio[:, mel_start * self.hop_size:(mel_start + frames_per_seg) * self.hop_size] | |
else: | |
mel = torch.nn.functional.pad(mel, (0, frames_per_seg - mel.size(2)), 'constant') | |
audio = torch.nn.functional.pad(audio, (0, self.segment_size - audio.size(1)), 'constant') | |
mel_loss = mel_spectrogram(audio, self.n_fft, self.num_mels, | |
self.sampling_rate, self.hop_size, self.win_size, self.fmin, self.fmax_loss, | |
center=False) | |
return (mel.squeeze(), audio.squeeze(0), filename, mel_loss.squeeze()) | |
def __len__(self): | |
return len(self.audio_files) | |