Spaces:
Running
Running
update
Browse filesImplement Solution A - Modify your HuggingFace app.py to add the /batch_search_medqa endpoint. This gives you:
β
True batch processing (1 API call for 60 objectives)
β
Automatic deduplication on the server
β
Pre-organized results
β
No user interaction needed
β
Scales to hundreds of objectives
app.py
CHANGED
|
@@ -7,7 +7,9 @@ from sentence_transformers import SentenceTransformer
|
|
| 7 |
import gradio as gr
|
| 8 |
from fastapi import FastAPI
|
| 9 |
from pydantic import BaseModel
|
|
|
|
| 10 |
import re
|
|
|
|
| 11 |
|
| 12 |
# Extract and load database
|
| 13 |
DB_PATH = "./medqa_db"
|
|
@@ -17,7 +19,7 @@ if not os.path.exists(DB_PATH) and os.path.exists("./medqa_db.zip"):
|
|
| 17 |
z.extractall(".")
|
| 18 |
print("β
Database extracted")
|
| 19 |
|
| 20 |
-
print("
|
| 21 |
client = chromadb.PersistentClient(path=DB_PATH)
|
| 22 |
collection = client.get_collection("medqa")
|
| 23 |
print(f"β
Loaded {collection.count()} questions")
|
|
@@ -191,7 +193,7 @@ def ui_search(query, num_results=3, source_filter="all"):
|
|
| 191 |
# Create Gradio interface
|
| 192 |
with gr.Blocks(theme=gr.themes.Soft(), title="MedQA Search") as demo:
|
| 193 |
gr.Markdown("""
|
| 194 |
-
#
|
| 195 |
|
| 196 |
Search across **Med-Gemini** (expert explanations) and **MedQA** (USMLE questions) databases.
|
| 197 |
Uses medical-specific embeddings (MedCPT) for accurate retrieval.
|
|
@@ -271,6 +273,11 @@ class SearchRequest(BaseModel):
|
|
| 271 |
num_results: int = 3
|
| 272 |
source_filter: str = None
|
| 273 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 274 |
@app.post("/search_medqa")
|
| 275 |
def api_search(req: SearchRequest):
|
| 276 |
"""
|
|
@@ -311,6 +318,147 @@ def api_search(req: SearchRequest):
|
|
| 311 |
|
| 312 |
return {"results": results}
|
| 313 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 314 |
app = gr.mount_gradio_app(app, demo, path="/")
|
| 315 |
|
| 316 |
if __name__ == "__main__":
|
|
|
|
| 7 |
import gradio as gr
|
| 8 |
from fastapi import FastAPI
|
| 9 |
from pydantic import BaseModel
|
| 10 |
+
from typing import List, Optional
|
| 11 |
import re
|
| 12 |
+
import time
|
| 13 |
|
| 14 |
# Extract and load database
|
| 15 |
DB_PATH = "./medqa_db"
|
|
|
|
| 19 |
z.extractall(".")
|
| 20 |
print("β
Database extracted")
|
| 21 |
|
| 22 |
+
print("π Loading ChromaDB...")
|
| 23 |
client = chromadb.PersistentClient(path=DB_PATH)
|
| 24 |
collection = client.get_collection("medqa")
|
| 25 |
print(f"β
Loaded {collection.count()} questions")
|
|
|
|
| 193 |
# Create Gradio interface
|
| 194 |
with gr.Blocks(theme=gr.themes.Soft(), title="MedQA Search") as demo:
|
| 195 |
gr.Markdown("""
|
| 196 |
+
# π₯Ό MedQA Semantic Search
|
| 197 |
|
| 198 |
Search across **Med-Gemini** (expert explanations) and **MedQA** (USMLE questions) databases.
|
| 199 |
Uses medical-specific embeddings (MedCPT) for accurate retrieval.
|
|
|
|
| 273 |
num_results: int = 3
|
| 274 |
source_filter: str = None
|
| 275 |
|
| 276 |
+
class BatchSearchRequest(BaseModel):
|
| 277 |
+
queries: List[str]
|
| 278 |
+
num_results_per_query: int = 10
|
| 279 |
+
source_filter: Optional[str] = None
|
| 280 |
+
|
| 281 |
@app.post("/search_medqa")
|
| 282 |
def api_search(req: SearchRequest):
|
| 283 |
"""
|
|
|
|
| 318 |
|
| 319 |
return {"results": results}
|
| 320 |
|
| 321 |
+
@app.post("/batch_search_medqa")
|
| 322 |
+
def batch_api_search(req: BatchSearchRequest):
|
| 323 |
+
"""
|
| 324 |
+
NEW: Batch search for multiple learning objectives.
|
| 325 |
+
Processes all queries, tracks duplicates, and returns organized results.
|
| 326 |
+
|
| 327 |
+
Returns:
|
| 328 |
+
- results_by_objective: List of results organized by each objective
|
| 329 |
+
- unique_questions: Deduplicated list of all questions
|
| 330 |
+
- statistics: Coverage and quality metrics
|
| 331 |
+
"""
|
| 332 |
+
|
| 333 |
+
start_time = time.time()
|
| 334 |
+
|
| 335 |
+
# Track all questions and their objective mappings
|
| 336 |
+
all_questions = {} # key: question_text, value: question data + objectives list
|
| 337 |
+
results_by_objective = []
|
| 338 |
+
|
| 339 |
+
for obj_idx, query in enumerate(req.queries):
|
| 340 |
+
objective_id = obj_idx + 1
|
| 341 |
+
|
| 342 |
+
# Search for this objective
|
| 343 |
+
r = search(query, req.num_results_per_query, req.source_filter)
|
| 344 |
+
|
| 345 |
+
objective_results = []
|
| 346 |
+
similarities = []
|
| 347 |
+
|
| 348 |
+
if r['documents'][0]:
|
| 349 |
+
for i in range(len(r['documents'][0])):
|
| 350 |
+
doc_text = r['documents'][0][i]
|
| 351 |
+
metadata = r['metadatas'][0][i]
|
| 352 |
+
similarity = round(1 - r['distances'][0][i], 3)
|
| 353 |
+
similarities.append(similarity)
|
| 354 |
+
|
| 355 |
+
# Parse the document
|
| 356 |
+
parsed = parse_question_document(doc_text, metadata)
|
| 357 |
+
|
| 358 |
+
# Create unique key for deduplication
|
| 359 |
+
question_key = parsed['question'][:200] # Use first 200 chars as key
|
| 360 |
+
|
| 361 |
+
# Build result object
|
| 362 |
+
result = {
|
| 363 |
+
"question": parsed['question'],
|
| 364 |
+
"choices": parsed['choices'],
|
| 365 |
+
"correct_answer": parsed['correct_answer_letter'],
|
| 366 |
+
"correct_answer_text": parsed['correct_answer_text'],
|
| 367 |
+
"explanation": metadata.get('explanation', ''),
|
| 368 |
+
"has_explanation": bool(metadata.get('explanation', '').strip()),
|
| 369 |
+
"source": metadata.get('source', 'unknown'),
|
| 370 |
+
"similarity": similarity
|
| 371 |
+
}
|
| 372 |
+
|
| 373 |
+
# Track for global deduplication
|
| 374 |
+
if question_key in all_questions:
|
| 375 |
+
# This question already exists - add this objective to its list
|
| 376 |
+
all_questions[question_key]['matches_objectives'].append(objective_id)
|
| 377 |
+
# Update similarity if higher
|
| 378 |
+
if similarity > all_questions[question_key]['max_similarity']:
|
| 379 |
+
all_questions[question_key]['max_similarity'] = similarity
|
| 380 |
+
else:
|
| 381 |
+
# First time seeing this question
|
| 382 |
+
all_questions[question_key] = {
|
| 383 |
+
**result,
|
| 384 |
+
'matches_objectives': [objective_id],
|
| 385 |
+
'max_similarity': similarity,
|
| 386 |
+
'first_seen_at': objective_id
|
| 387 |
+
}
|
| 388 |
+
|
| 389 |
+
objective_results.append(result)
|
| 390 |
+
|
| 391 |
+
# Store results for this objective
|
| 392 |
+
results_by_objective.append({
|
| 393 |
+
"objective_id": objective_id,
|
| 394 |
+
"objective_text": query,
|
| 395 |
+
"num_results": len(objective_results),
|
| 396 |
+
"avg_similarity": round(sum(similarities) / len(similarities), 3) if similarities else 0,
|
| 397 |
+
"results": objective_results
|
| 398 |
+
})
|
| 399 |
+
|
| 400 |
+
# Prepare unique questions list
|
| 401 |
+
unique_questions = list(all_questions.values())
|
| 402 |
+
|
| 403 |
+
# Calculate statistics
|
| 404 |
+
execution_time = round(time.time() - start_time, 2)
|
| 405 |
+
total_retrieved = sum(obj['num_results'] for obj in results_by_objective)
|
| 406 |
+
|
| 407 |
+
# Coverage analysis
|
| 408 |
+
coverage = {
|
| 409 |
+
"excellent": [obj for obj in results_by_objective if obj['num_results'] >= 5],
|
| 410 |
+
"moderate": [obj for obj in results_by_objective if 2 <= obj['num_results'] < 5],
|
| 411 |
+
"limited": [obj for obj in results_by_objective if obj['num_results'] == 1],
|
| 412 |
+
"none": [obj for obj in results_by_objective if obj['num_results'] == 0]
|
| 413 |
+
}
|
| 414 |
+
|
| 415 |
+
# Multi-objective questions
|
| 416 |
+
multi_objective_questions = [q for q in unique_questions if len(q['matches_objectives']) > 1]
|
| 417 |
+
|
| 418 |
+
# Source distribution
|
| 419 |
+
sources = {}
|
| 420 |
+
for q in unique_questions:
|
| 421 |
+
source = q['source']
|
| 422 |
+
sources[source] = sources.get(source, 0) + 1
|
| 423 |
+
|
| 424 |
+
# Similarity distribution
|
| 425 |
+
all_similarities = [q['max_similarity'] for q in unique_questions]
|
| 426 |
+
high_sim = len([s for s in all_similarities if s > 0.8])
|
| 427 |
+
med_sim = len([s for s in all_similarities if 0.7 <= s <= 0.8])
|
| 428 |
+
low_sim = len([s for s in all_similarities if s < 0.7])
|
| 429 |
+
|
| 430 |
+
statistics = {
|
| 431 |
+
"total_objectives": len(req.queries),
|
| 432 |
+
"total_retrieved": total_retrieved,
|
| 433 |
+
"unique_questions": len(unique_questions),
|
| 434 |
+
"deduplication_rate": round((total_retrieved - len(unique_questions)) / total_retrieved * 100, 1) if total_retrieved > 0 else 0,
|
| 435 |
+
"execution_time_seconds": execution_time,
|
| 436 |
+
"coverage": {
|
| 437 |
+
"excellent_coverage_count": len(coverage["excellent"]),
|
| 438 |
+
"moderate_coverage_count": len(coverage["moderate"]),
|
| 439 |
+
"limited_coverage_count": len(coverage["limited"]),
|
| 440 |
+
"no_coverage_count": len(coverage["none"]),
|
| 441 |
+
"no_coverage_objectives": [obj['objective_id'] for obj in coverage["none"]]
|
| 442 |
+
},
|
| 443 |
+
"cross_objective": {
|
| 444 |
+
"multi_objective_questions": len(multi_objective_questions),
|
| 445 |
+
"multi_objective_percentage": round(len(multi_objective_questions) / len(unique_questions) * 100, 1) if unique_questions else 0
|
| 446 |
+
},
|
| 447 |
+
"sources": sources,
|
| 448 |
+
"similarity_distribution": {
|
| 449 |
+
"high_similarity_count": high_sim,
|
| 450 |
+
"medium_similarity_count": med_sim,
|
| 451 |
+
"low_similarity_count": low_sim,
|
| 452 |
+
"average_similarity": round(sum(all_similarities) / len(all_similarities), 3) if all_similarities else 0
|
| 453 |
+
}
|
| 454 |
+
}
|
| 455 |
+
|
| 456 |
+
return {
|
| 457 |
+
"results_by_objective": results_by_objective,
|
| 458 |
+
"unique_questions": unique_questions,
|
| 459 |
+
"statistics": statistics
|
| 460 |
+
}
|
| 461 |
+
|
| 462 |
app = gr.mount_gradio_app(app, demo, path="/")
|
| 463 |
|
| 464 |
if __name__ == "__main__":
|