Spaces:
Runtime error
Runtime error
import torch | |
import numpy as np | |
import torch.nn.functional as F | |
from diffusers import StableDiffusionPipeline | |
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput | |
from typing import Any, Callable, Dict, List, Optional, Union | |
from sd.pnp_utils import register_time, register_attention_control_efficient_kv_w_mask, register_conv_control_efficient_w_mask | |
import torch.nn as nn | |
from sd.dift_sd import MyUNet2DConditionModel, OneStepSDPipeline | |
import ipdb | |
from tqdm import tqdm | |
from lib.midas import MiDas | |
class DDIMBackward(StableDiffusionPipeline): | |
def __init__( | |
self, vae, text_encoder, tokenizer, unet, scheduler, | |
safety_checker, feature_extractor, | |
requires_safety_checker: bool = True, | |
device='cuda', model_id='ckpt/stable-diffusion-2-1-base',depth_model='dpt_swin2_large_384' | |
): | |
super().__init__( | |
vae, text_encoder, tokenizer, unet, scheduler, | |
safety_checker, feature_extractor, requires_safety_checker, | |
) | |
self.dift_unet = MyUNet2DConditionModel.from_pretrained(model_id, subfolder="unet", torch_dtype=torch.float16 if 'cuda' in device else torch.float32) | |
self.onestep_pipe = OneStepSDPipeline.from_pretrained(model_id, unet=self.dift_unet, safety_checker=None, torch_dtype=torch.float16 if 'cuda' in device else torch.float32) | |
self.onestep_pipe = self.onestep_pipe.to(device) | |
if 'cuda' in device: | |
self.onestep_pipe.enable_attention_slicing() | |
self.onestep_pipe.enable_xformers_memory_efficient_attention() | |
self.ensemble_size = 4 | |
self.cos = nn.CosineSimilarity(dim=1, eps=1e-6) | |
self.midas_model = MiDas(device,model_type=depth_model) | |
self.torch_dtype=torch.float16 if 'cuda' in device else torch.float32 | |
def __call__( | |
self, | |
prompt: Union[str, List[str]] = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 7.5, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: int = 1, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
t_start=None, | |
): | |
height = height or self.unet.config.sample_size * self.vae_scale_factor | |
width = width or self.unet.config.sample_size * self.vae_scale_factor | |
self.check_inputs( | |
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds | |
) | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
prompt_embeds = self._encode_prompt( | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
) | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
num_channels_latents = self.unet.in_channels | |
latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
if t_start and t >= t_start: | |
progress_bar.update() | |
continue | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
# predict the noise residual | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
cross_attention_kwargs=cross_attention_kwargs, | |
).sample | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
callback(i, t, latents) | |
if output_type == "latent": | |
image = latents | |
has_nsfw_concept = None | |
elif output_type == "pil": | |
image = self.decode_latents(latents) | |
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) | |
image = self.numpy_to_pil(image) | |
else: | |
image = self.decode_latents(latents) | |
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) | |
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
self.final_offload_hook.offload() | |
if not return_dict: | |
return (image, has_nsfw_concept) | |
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | |
def denoise_w_injection( | |
self, | |
prompt: Union[str, List[str]] = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 7.5, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: int = 1, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
t_start=None, | |
attn=0.8, | |
f=0.5, | |
latent_mask=None, | |
guidance_loss_scale=0, | |
cfg_decay=False, | |
cfg_norm=False, | |
lr=1.0, | |
up_ft_indexes=[1,2], | |
img_tensor=None, | |
early_stop=50, | |
intrinsic=None, extrinsic=None, threshold=20,depth=None, | |
): | |
height = height or self.unet.config.sample_size * self.vae_scale_factor | |
width = width or self.unet.config.sample_size * self.vae_scale_factor | |
self.check_inputs( | |
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds | |
) | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
prompt_embeds = self._encode_prompt( | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
) | |
if do_classifier_free_guidance: | |
prompt_embeds = torch.cat((prompt_embeds[1:], prompt_embeds[1:], prompt_embeds[:1]), dim=0) | |
else: | |
prompt_embeds = torch.cat([prompt_embeds]*2, dim=0) | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
num_channels_latents = self.unet.in_channels | |
latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
kv_injection_timesteps = self.scheduler.timesteps[:int(len(self.scheduler.timesteps) * attn)] | |
f_injection_timesteps = self.scheduler.timesteps[:int(len(self.scheduler.timesteps) * f)] | |
register_attention_control_efficient_kv_w_mask(self, kv_injection_timesteps, mask=latent_mask, do_classifier_free_guidance=do_classifier_free_guidance) | |
register_conv_control_efficient_w_mask(self, f_injection_timesteps, mask=latent_mask) | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
if t_start and t >= t_start: | |
progress_bar.update() | |
continue | |
if i > early_stop: guidance_loss_scale = 0 # Early stop (optional) | |
# if t > 300: guidance_loss_scale = 0 # Early stop (optional) | |
register_time(self, t.item()) | |
# Set requires grad | |
if guidance_loss_scale != 0: | |
latents = latents.detach().requires_grad_() | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = latents # latents: ori_z + wrap_z | |
if do_classifier_free_guidance: | |
latent_model_input = torch.cat([latent_model_input, latent_model_input[1:]], dim=0) | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
# predict the noise residual | |
if guidance_loss_scale != 0: | |
with torch.no_grad(): | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
cross_attention_kwargs=cross_attention_kwargs, | |
).sample | |
else: | |
with torch.no_grad(): | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
cross_attention_kwargs=cross_attention_kwargs, | |
).sample | |
# perform guidance | |
if do_classifier_free_guidance: | |
cfg_scale = guidance_scale | |
if cfg_decay: cfg_scale = 1 + guidance_scale * (1-i/num_inference_steps) | |
noise_pred_text, wrap_noise_pred_text, wrap_noise_pred_uncond = noise_pred.chunk(3) | |
noise_pred = wrap_noise_pred_text + cfg_scale * (wrap_noise_pred_text - wrap_noise_pred_uncond) | |
else: | |
noise_pred_text, wrap_noise_pred_text = noise_pred.chunk(3) | |
noise_pred = wrap_noise_pred_text | |
if cfg_norm: | |
noise_pred = noise_pred * (torch.linalg.norm(wrap_noise_pred_uncond) / torch.linalg.norm(noise_pred)) | |
if guidance_loss_scale != 0: | |
for up_ft_index in up_ft_indexes: | |
alpha_prod_t = self.scheduler.alphas_cumprod[t] | |
alpha_prod_t_prev = ( | |
self.scheduler.alphas_cumprod[timesteps[i - 0]] | |
if i > 0 else self.scheduler.final_alpha_cumprod | |
) | |
mu = alpha_prod_t ** 0.5 | |
mu_prev = alpha_prod_t_prev ** 0.5 | |
sigma = (1 - alpha_prod_t) ** 0.5 | |
sigma_prev = (1 - alpha_prod_t_prev) ** 0.5 | |
pred_x0 = (latents - sigma_prev * noise_pred[:latents.shape[0]]) / mu_prev | |
unet_ft_all = self.onestep_pipe( | |
latents=pred_x0[:1].repeat(self.ensemble_size, 1, 1, 1), | |
t=t, | |
up_ft_indices=[up_ft_index], | |
prompt_embeds=prompt_embeds[:1].repeat(self.ensemble_size, 1, 1) | |
) | |
unet_ft1 = unet_ft_all['up_ft'][up_ft_index].mean(0, keepdim=True) # 1,c,h,w | |
unet_ft1_norm = unet_ft1 / torch.norm(unet_ft1, dim=1, keepdim=True) | |
unet_ft1_norm = self.midas_model.wrap_img_tensor_w_fft_ext( | |
unet_ft1_norm.to(self.torch_dtype), | |
torch.from_numpy(depth).to(device).to(self.torch_dtype), | |
intrinsic, | |
extrinsic[:3,:3], extrinsic[:3,3], threshold=threshold).to(self.torch_dtype) | |
unet_ft_all = self.onestep_pipe( | |
latents=pred_x0[1:2].repeat(self.ensemble_size, 1, 1, 1), | |
t=t, | |
up_ft_indices=[up_ft_index], | |
prompt_embeds=prompt_embeds[:1].repeat(self.ensemble_size, 1, 1) | |
) | |
unet_ft2 = unet_ft_all['up_ft'][up_ft_index].mean(0, keepdim=True) # 1,c,h,w | |
unet_ft2_norm = unet_ft2 / torch.norm(unet_ft2, dim=1, keepdim=True) | |
c = unet_ft2.shape[1] | |
loss = (-self.cos(unet_ft1_norm.squeeze().view(c, -1).T, unet_ft2_norm.squeeze().view(c, -1).T).mean() + 1) / 2. | |
# Get gradient | |
cond_grad = torch.autograd.grad(loss * guidance_loss_scale, latents)[0][1:2] | |
# compute the previous noisy sample x_t -> x_t-1 | |
noise_pred_ = noise_pred - sigma_prev * cond_grad*lr | |
noise_pred_ = torch.cat([noise_pred_text, noise_pred_], dim=0) | |
# compute the previous noisy sample x_t -> x_t-1 | |
with torch.no_grad(): | |
latents = self.scheduler.step(noise_pred_, t, latents, **extra_step_kwargs).prev_sample | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
callback(i, t, latents) | |
if output_type == "latent": | |
image = latents | |
has_nsfw_concept = None | |
elif output_type == "pil": | |
with torch.no_grad(): | |
image = self.decode_latents(latents) | |
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) | |
image = self.numpy_to_pil(image) | |
else: | |
image = self.decode_latents(latents) | |
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) | |
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
self.final_offload_hook.offload() | |
if not return_dict: | |
return (image, has_nsfw_concept) | |
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | |
def decoder(self, latents): | |
with torch.autocast(device_type=self.device, dtype=torch.float32): | |
latents = 1 / 0.18215 * latents | |
imgs = self.vae.decode(latents).sample | |
imgs = (imgs / 2 + 0.5).clamp(0, 1) | |
return imgs | |
def ddim_inversion_w_grad(self, latent, cond, stop_t, guidance_loss_scale=1.0, lr=1.0): | |
timesteps = reversed(self.scheduler.timesteps) | |
with torch.autocast(device_type=self.device, dtype=torch.float32): | |
for i, t in enumerate(tqdm(timesteps)): | |
if t >= stop_t: | |
break | |
if guidance_loss_scale != 0: | |
latent = latent.detach().requires_grad_() | |
cond_batch = cond.repeat(latent.shape[0], 1, 1) | |
alpha_prod_t = self.scheduler.alphas_cumprod[t] | |
alpha_prod_t_prev = ( | |
self.scheduler.alphas_cumprod[timesteps[i - 1]] | |
if i > 0 else self.scheduler.final_alpha_cumprod | |
) | |
mu = alpha_prod_t ** 0.5 | |
mu_prev = alpha_prod_t_prev ** 0.5 | |
sigma = (1 - alpha_prod_t) ** 0.5 | |
sigma_prev = (1 - alpha_prod_t_prev) ** 0.5 | |
eps = self.onestep_pipe.unet(latent, t, encoder_hidden_states=cond_batch, up_ft_indices=[3], output_eps=True)['eps'] | |
pred_x0 = (latent - sigma_prev * eps) / mu_prev | |
unet_ft_all = self.onestep_pipe( | |
latents=pred_x0[:1].repeat(self.ensemble_size, 1, 1, 1), | |
t=t, | |
up_ft_indices=[1], | |
prompt_embeds=cond_batch[:1].repeat(self.ensemble_size, 1, 1) | |
) | |
unet_ft1 = unet_ft_all['up_ft'][1].mean(0, keepdim=True) # 1,c,h,w | |
unet_ft1_norm = unet_ft1 / torch.norm(unet_ft1, dim=1, keepdim=True) | |
unet_ft_all = self.onestep_pipe( | |
latents=pred_x0[1:2].repeat(self.ensemble_size, 1, 1, 1), | |
t=t, | |
up_ft_indices=[1], | |
prompt_embeds=cond_batch[:1].repeat(self.ensemble_size, 1, 1) | |
) | |
unet_ft2 = unet_ft_all['up_ft'][1].mean(0, keepdim=True) # 1,c,h,w | |
unet_ft2_norm = unet_ft2 / torch.norm(unet_ft2, dim=1, keepdim=True) | |
c = unet_ft2.shape[1] | |
loss = (-self.cos(unet_ft1_norm.squeeze().view(c, -1).T.detach(), unet_ft2_norm.squeeze().view(c, -1).T).mean() + 1) / 2. | |
print(f'loss: {loss.item()}') | |
# Get gradient | |
cond_grad = torch.autograd.grad(loss * guidance_loss_scale, latent)[0] | |
# latent = latent.detach() - cond_grad * lr | |
latent = mu * pred_x0 + sigma * eps - cond_grad * lr | |
return latent | |
def DDPM_forward(x_t_dot, t_start, delta_t, ddpm_scheduler, generator): | |
# just simple implementation, this should have an analytical expression | |
# TODO: implementation analytical form | |
for delta in range(1, delta_t): | |
# noise = torch.randn_like(x_t_dot, generator=generator) | |
noise = torch.empty_like(x_t_dot).normal_(generator=generator) | |
beta = ddpm_scheduler.betas[t_start+delta] | |
std_ = beta ** 0.5 | |
mu_ = ((1 - beta) ** 0.5) * x_t_dot | |
x_t_dot = mu_ + std_ * noise | |
return x_t_dot | |