dreamdrone / sd /core.py
imsuperkong's picture
Upload 6 files
d3bdeec
raw history blame
No virus
20.4 kB
import torch
import numpy as np
import torch.nn.functional as F
from diffusers import StableDiffusionPipeline
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from typing import Any, Callable, Dict, List, Optional, Union
from sd.pnp_utils import register_time, register_attention_control_efficient_kv_w_mask, register_conv_control_efficient_w_mask
import torch.nn as nn
from sd.dift_sd import MyUNet2DConditionModel, OneStepSDPipeline
import ipdb
from tqdm import tqdm
from lib.midas import MiDas
class DDIMBackward(StableDiffusionPipeline):
def __init__(
self, vae, text_encoder, tokenizer, unet, scheduler,
safety_checker, feature_extractor,
requires_safety_checker: bool = True,
device='cuda', model_id='ckpt/stable-diffusion-2-1-base',depth_model='dpt_swin2_large_384'
):
super().__init__(
vae, text_encoder, tokenizer, unet, scheduler,
safety_checker, feature_extractor, requires_safety_checker,
)
self.dift_unet = MyUNet2DConditionModel.from_pretrained(model_id, subfolder="unet", torch_dtype=torch.float16 if 'cuda' in device else torch.float32)
self.onestep_pipe = OneStepSDPipeline.from_pretrained(model_id, unet=self.dift_unet, safety_checker=None, torch_dtype=torch.float16 if 'cuda' in device else torch.float32)
self.onestep_pipe = self.onestep_pipe.to(device)
if 'cuda' in device:
self.onestep_pipe.enable_attention_slicing()
self.onestep_pipe.enable_xformers_memory_efficient_attention()
self.ensemble_size = 4
self.cos = nn.CosineSimilarity(dim=1, eps=1e-6)
self.midas_model = MiDas(device,model_type=depth_model)
self.torch_dtype=torch.float16 if 'cuda' in device else torch.float32
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
t_start=None,
):
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
self.check_inputs(
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
)
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
do_classifier_free_guidance = guidance_scale > 1.0
prompt_embeds = self._encode_prompt(
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
)
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
num_channels_latents = self.unet.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if t_start and t >= t_start:
progress_bar.update()
continue
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
if output_type == "latent":
image = latents
has_nsfw_concept = None
elif output_type == "pil":
image = self.decode_latents(latents)
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
image = self.numpy_to_pil(image)
else:
image = self.decode_latents(latents)
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
def denoise_w_injection(
self,
prompt: Union[str, List[str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
t_start=None,
attn=0.8,
f=0.5,
latent_mask=None,
guidance_loss_scale=0,
cfg_decay=False,
cfg_norm=False,
lr=1.0,
up_ft_indexes=[1,2],
img_tensor=None,
early_stop=50,
intrinsic=None, extrinsic=None, threshold=20,depth=None,
):
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
self.check_inputs(
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
)
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
do_classifier_free_guidance = guidance_scale > 1.0
prompt_embeds = self._encode_prompt(
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
)
if do_classifier_free_guidance:
prompt_embeds = torch.cat((prompt_embeds[1:], prompt_embeds[1:], prompt_embeds[:1]), dim=0)
else:
prompt_embeds = torch.cat([prompt_embeds]*2, dim=0)
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
num_channels_latents = self.unet.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
kv_injection_timesteps = self.scheduler.timesteps[:int(len(self.scheduler.timesteps) * attn)]
f_injection_timesteps = self.scheduler.timesteps[:int(len(self.scheduler.timesteps) * f)]
register_attention_control_efficient_kv_w_mask(self, kv_injection_timesteps, mask=latent_mask, do_classifier_free_guidance=do_classifier_free_guidance)
register_conv_control_efficient_w_mask(self, f_injection_timesteps, mask=latent_mask)
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if t_start and t >= t_start:
progress_bar.update()
continue
if i > early_stop: guidance_loss_scale = 0 # Early stop (optional)
# if t > 300: guidance_loss_scale = 0 # Early stop (optional)
register_time(self, t.item())
# Set requires grad
if guidance_loss_scale != 0:
latents = latents.detach().requires_grad_()
# expand the latents if we are doing classifier free guidance
latent_model_input = latents # latents: ori_z + wrap_z
if do_classifier_free_guidance:
latent_model_input = torch.cat([latent_model_input, latent_model_input[1:]], dim=0)
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
if guidance_loss_scale != 0:
with torch.no_grad():
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
).sample
else:
with torch.no_grad():
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
).sample
# perform guidance
if do_classifier_free_guidance:
cfg_scale = guidance_scale
if cfg_decay: cfg_scale = 1 + guidance_scale * (1-i/num_inference_steps)
noise_pred_text, wrap_noise_pred_text, wrap_noise_pred_uncond = noise_pred.chunk(3)
noise_pred = wrap_noise_pred_text + cfg_scale * (wrap_noise_pred_text - wrap_noise_pred_uncond)
else:
noise_pred_text, wrap_noise_pred_text = noise_pred.chunk(3)
noise_pred = wrap_noise_pred_text
if cfg_norm:
noise_pred = noise_pred * (torch.linalg.norm(wrap_noise_pred_uncond) / torch.linalg.norm(noise_pred))
if guidance_loss_scale != 0:
for up_ft_index in up_ft_indexes:
alpha_prod_t = self.scheduler.alphas_cumprod[t]
alpha_prod_t_prev = (
self.scheduler.alphas_cumprod[timesteps[i - 0]]
if i > 0 else self.scheduler.final_alpha_cumprod
)
mu = alpha_prod_t ** 0.5
mu_prev = alpha_prod_t_prev ** 0.5
sigma = (1 - alpha_prod_t) ** 0.5
sigma_prev = (1 - alpha_prod_t_prev) ** 0.5
pred_x0 = (latents - sigma_prev * noise_pred[:latents.shape[0]]) / mu_prev
unet_ft_all = self.onestep_pipe(
latents=pred_x0[:1].repeat(self.ensemble_size, 1, 1, 1),
t=t,
up_ft_indices=[up_ft_index],
prompt_embeds=prompt_embeds[:1].repeat(self.ensemble_size, 1, 1)
)
unet_ft1 = unet_ft_all['up_ft'][up_ft_index].mean(0, keepdim=True) # 1,c,h,w
unet_ft1_norm = unet_ft1 / torch.norm(unet_ft1, dim=1, keepdim=True)
unet_ft1_norm = self.midas_model.wrap_img_tensor_w_fft_ext(
unet_ft1_norm.to(self.torch_dtype),
torch.from_numpy(depth).to(device).to(self.torch_dtype),
intrinsic,
extrinsic[:3,:3], extrinsic[:3,3], threshold=threshold).to(self.torch_dtype)
unet_ft_all = self.onestep_pipe(
latents=pred_x0[1:2].repeat(self.ensemble_size, 1, 1, 1),
t=t,
up_ft_indices=[up_ft_index],
prompt_embeds=prompt_embeds[:1].repeat(self.ensemble_size, 1, 1)
)
unet_ft2 = unet_ft_all['up_ft'][up_ft_index].mean(0, keepdim=True) # 1,c,h,w
unet_ft2_norm = unet_ft2 / torch.norm(unet_ft2, dim=1, keepdim=True)
c = unet_ft2.shape[1]
loss = (-self.cos(unet_ft1_norm.squeeze().view(c, -1).T, unet_ft2_norm.squeeze().view(c, -1).T).mean() + 1) / 2.
# Get gradient
cond_grad = torch.autograd.grad(loss * guidance_loss_scale, latents)[0][1:2]
# compute the previous noisy sample x_t -> x_t-1
noise_pred_ = noise_pred - sigma_prev * cond_grad*lr
noise_pred_ = torch.cat([noise_pred_text, noise_pred_], dim=0)
# compute the previous noisy sample x_t -> x_t-1
with torch.no_grad():
latents = self.scheduler.step(noise_pred_, t, latents, **extra_step_kwargs).prev_sample
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
if output_type == "latent":
image = latents
has_nsfw_concept = None
elif output_type == "pil":
with torch.no_grad():
image = self.decode_latents(latents)
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
image = self.numpy_to_pil(image)
else:
image = self.decode_latents(latents)
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
@torch.no_grad()
def decoder(self, latents):
with torch.autocast(device_type=self.device, dtype=torch.float32):
latents = 1 / 0.18215 * latents
imgs = self.vae.decode(latents).sample
imgs = (imgs / 2 + 0.5).clamp(0, 1)
return imgs
def ddim_inversion_w_grad(self, latent, cond, stop_t, guidance_loss_scale=1.0, lr=1.0):
timesteps = reversed(self.scheduler.timesteps)
with torch.autocast(device_type=self.device, dtype=torch.float32):
for i, t in enumerate(tqdm(timesteps)):
if t >= stop_t:
break
if guidance_loss_scale != 0:
latent = latent.detach().requires_grad_()
cond_batch = cond.repeat(latent.shape[0], 1, 1)
alpha_prod_t = self.scheduler.alphas_cumprod[t]
alpha_prod_t_prev = (
self.scheduler.alphas_cumprod[timesteps[i - 1]]
if i > 0 else self.scheduler.final_alpha_cumprod
)
mu = alpha_prod_t ** 0.5
mu_prev = alpha_prod_t_prev ** 0.5
sigma = (1 - alpha_prod_t) ** 0.5
sigma_prev = (1 - alpha_prod_t_prev) ** 0.5
eps = self.onestep_pipe.unet(latent, t, encoder_hidden_states=cond_batch, up_ft_indices=[3], output_eps=True)['eps']
pred_x0 = (latent - sigma_prev * eps) / mu_prev
unet_ft_all = self.onestep_pipe(
latents=pred_x0[:1].repeat(self.ensemble_size, 1, 1, 1),
t=t,
up_ft_indices=[1],
prompt_embeds=cond_batch[:1].repeat(self.ensemble_size, 1, 1)
)
unet_ft1 = unet_ft_all['up_ft'][1].mean(0, keepdim=True) # 1,c,h,w
unet_ft1_norm = unet_ft1 / torch.norm(unet_ft1, dim=1, keepdim=True)
unet_ft_all = self.onestep_pipe(
latents=pred_x0[1:2].repeat(self.ensemble_size, 1, 1, 1),
t=t,
up_ft_indices=[1],
prompt_embeds=cond_batch[:1].repeat(self.ensemble_size, 1, 1)
)
unet_ft2 = unet_ft_all['up_ft'][1].mean(0, keepdim=True) # 1,c,h,w
unet_ft2_norm = unet_ft2 / torch.norm(unet_ft2, dim=1, keepdim=True)
c = unet_ft2.shape[1]
loss = (-self.cos(unet_ft1_norm.squeeze().view(c, -1).T.detach(), unet_ft2_norm.squeeze().view(c, -1).T).mean() + 1) / 2.
print(f'loss: {loss.item()}')
# Get gradient
cond_grad = torch.autograd.grad(loss * guidance_loss_scale, latent)[0]
# latent = latent.detach() - cond_grad * lr
latent = mu * pred_x0 + sigma * eps - cond_grad * lr
return latent
@torch.no_grad()
def DDPM_forward(x_t_dot, t_start, delta_t, ddpm_scheduler, generator):
# just simple implementation, this should have an analytical expression
# TODO: implementation analytical form
for delta in range(1, delta_t):
# noise = torch.randn_like(x_t_dot, generator=generator)
noise = torch.empty_like(x_t_dot).normal_(generator=generator)
beta = ddpm_scheduler.betas[t_start+delta]
std_ = beta ** 0.5
mu_ = ((1 - beta) ** 0.5) * x_t_dot
x_t_dot = mu_ + std_ * noise
return x_t_dot