|
import gradio as gr |
|
import torch |
|
from transformers import PegasusForConditionalGeneration, PegasusTokenizer |
|
from sentence_splitter import SentenceSplitter, split_text_into_sentences |
|
|
|
model_name = 'tuner007/pegasus_paraphrase' |
|
torch_device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
tokenizer = PegasusTokenizer.from_pretrained(model_name) |
|
model = PegasusForConditionalGeneration.from_pretrained(model_name).to(torch_device) |
|
|
|
|
|
def get_response(input_text, num_return_sequences): |
|
batch = tokenizer.prepare_seq2seq_batch([input_text], truncation=True, padding='longest', max_length=10000, |
|
return_tensors="pt").to(torch_device) |
|
translated = model.generate(**batch, num_beams=10, num_return_sequences=num_return_sequences, |
|
temperature=1.5) |
|
tgt_text = tokenizer.batch_decode(translated, skip_special_tokens=True) |
|
return tgt_text |
|
|
|
|
|
def get_response_from_text( |
|
context="I am a student at the University of Washington. I am taking a course called Data Science."): |
|
splitter = SentenceSplitter(language='en') |
|
sentence_list = splitter.split(context) |
|
|
|
paraphrase = [] |
|
|
|
for i in sentence_list: |
|
a = get_response(i, 1) |
|
paraphrase.append(a) |
|
paraphrase2 = [' '.join(x) for x in paraphrase] |
|
paraphrase3 = [' '.join(x for x in paraphrase2)] |
|
paraphrased_text = str(paraphrase3).strip('[]').strip("'") |
|
return paraphrased_text |
|
|
|
|
|
def greet(context): |
|
return get_response_from_text(context) |
|
|
|
|
|
iface = gr.Interface(fn=greet, inputs="text", outputs="text") |
|
iface.launch() |