maslionok
change
d7a5646
raw
history blame
3.42 kB
import os
# Redirect cache to a writable path inside container
os.environ["XDG_CACHE_HOME"] = "/tmp/.cache"
import gradio as gr
from impresso_pipelines.solrnormalization import SolrNormalizationPipeline
pipeline = SolrNormalizationPipeline()
LANGUAGES = ["de", "fr", "es", "it", "pt", "nl", "en", "general"]
def normalize(text, lang_choice):
try:
lang = None if lang_choice == "Auto-detect" else lang_choice
result = pipeline(text, lang=lang, diagnostics=True)
# Format analyzer pipeline for better readability
analyzer_steps = []
if 'analyzer_pipeline' in result and result['analyzer_pipeline']:
for i, step in enumerate(result['analyzer_pipeline'], 1):
step_type = step.get('type', 'unknown')
step_name = step.get('name', 'unnamed')
analyzer_steps.append(f" {i}. {step_type}: {step_name}")
analyzer_display = "\n".join(analyzer_steps) if analyzer_steps else " No analyzer steps found"
return f"🌍 Language: {result['language']}\n\n🔤 Tokens:\n{result['tokens']}\n\n🚫 Detected stopwords:\n{result['stopwords_detected']}\n\n⚙️ Analyzer pipeline:\n{analyzer_display}"
except Exception as e:
print("❌ Pipeline error:", e)
return f"Error: {e}"
# Define example inputs for different languages
examples = [
["The quick brown fox jumps over the lazy dog. This is a sample text for testing.", "en"],
["Der schnelle braune Fuchs springt über den faulen Hund. Dies ist ein Beispieltext zum Testen.", "de"],
["Le renard brun rapide saute par-dessus le chien paresseux. Ceci est un texte d'exemple pour les tests.", "fr"],
["El zorro marrón rápido salta sobre el perro perezoso. Este es un texto de ejemplo para pruebas.", "es"],
["La volpe marrone veloce salta sopra il cane pigro. Questo è un testo di esempio per i test.", "it"],
["Auto-detect language: Mixed content with English and Français words together!", "Auto-detect"]
]
demo = gr.Interface(
fn=normalize,
inputs=[
gr.Textbox(
label="Enter Text",
placeholder="Type your text here or try one of the examples below...",
lines=3
),
gr.Dropdown(choices=["Auto-detect"] + LANGUAGES, value="Auto-detect", label="Language")
],
outputs=gr.Textbox(label="Normalized Output", lines=10),
examples=examples,
title="🔥 Solr Normalization Pipeline",
description="""
<div style="text-align: center; margin-bottom: 20px;">
<img src="file/logo.jpeg" alt="Logo" style="max-width: 200px; height: auto; border-radius: 8px;">
</div>
**Solr normalization is intended to give an idea of what kind of normalization is happening behind Impresso.**
This demo replicates Solr's text analysis functionality, showing how text is processed through various normalization steps including tokenization, stopword removal, and language-specific analysis.
Try the examples below or enter your own text to see how different languages are processed!
""",
article="""
### About
This tool demonstrates the text normalization pipeline used in the Impresso project, which mirrors Apache Solr's text analysis capabilities.
""",
theme=gr.themes.Soft(),
allow_flagging="never"
)
demo.launch(server_name="0.0.0.0", server_port=7860)