Spaces:
Build error
Build error
import os | |
os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
import functools | |
from PIL import Image, ImageDraw | |
import gradio as gr | |
import torch | |
from docquery.pipeline import get_pipeline | |
from docquery.document import load_bytes, load_document, ImageDocument | |
def ensure_list(x): | |
if isinstance(x, list): | |
return x | |
else: | |
return [x] | |
CHECKPOINTS = { | |
"LayoutLMv1 🦉": "impira/layoutlm-document-qa", | |
"Donut 🍩": "naver-clova-ix/donut-base-finetuned-docvqa", | |
} | |
PIPELINES = {} | |
def construct_pipeline(model): | |
global PIPELINES | |
if model in PIPELINES: | |
return PIPELINES[model] | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
ret = get_pipeline(checkpoint=CHECKPOINTS[model], device=device) | |
PIPELINES[model] = ret | |
return ret | |
def run_pipeline(model, question, document, top_k): | |
pipeline = construct_pipeline(model) | |
return pipeline(question=question, **document.context, top_k=top_k) | |
# TODO: Move into docquery | |
# TODO: Support words past the first page (or window?) | |
def lift_word_boxes(document): | |
return document.context["image"][0][1] | |
def expand_bbox(word_boxes, padding=0.1): | |
if len(word_boxes) == 0: | |
return None | |
min_x, min_y, max_x, max_y = zip(*[x[1] for x in word_boxes]) | |
min_x, min_y, max_x, max_y = [min(min_x), min(min_y), max(max_x), max(max_y)] | |
if padding != 0: | |
padding = max((max_x - min_x) * padding, (max_y - min_y) * padding) | |
min_x = max(0, min_x - padding) | |
min_y = max(0, min_y - padding) | |
max_x = max_x + padding | |
max_y = max_y + padding | |
return [min_x, min_y, max_x, max_y] | |
# LayoutLM boxes are normalized to 0, 1000 | |
def normalize_bbox(box, width, height): | |
pct = [c / 1000 for c in box] | |
return [pct[0] * width, pct[1] * height, pct[2] * width, pct[3] * height] | |
examples = [ | |
[ | |
"invoice.png", | |
"What is the invoice number?", | |
], | |
[ | |
"contract.jpeg", | |
"What is the purchase amount?", | |
], | |
[ | |
"statement.png", | |
"What are net sales for 2020?", | |
], | |
] | |
def process_path(path): | |
if path: | |
try: | |
document = load_document(path) | |
return document, document.preview, None | |
except Exception: | |
pass | |
return None, None, None | |
def process_upload(file): | |
if file: | |
return process_path(file.name) | |
else: | |
return None, None, None | |
colors = ["#64A087", "green", "black"] | |
def process_question(question, document, model=list(CHECKPOINTS.keys())[0]): | |
if document is None: | |
return None, None | |
predictions = run_pipeline(model, question, document, 3) | |
image = document.preview.copy() | |
draw = ImageDraw.Draw(image, "RGBA") | |
for i, p in enumerate(ensure_list(predictions)): | |
if i > 0: | |
# Keep the code around to produce multiple boxes, but only show the top | |
# prediction for now | |
break | |
if "start" in p and "end" in p: | |
x1, y1, x2, y2 = normalize_bbox( | |
expand_bbox(lift_word_boxes(document)[p["start"] : p["end"] + 1]), | |
image.width, | |
image.height, | |
) | |
draw.rectangle(((x1, y1), (x2, y2)), fill=(0, 255, 0, int(0.4 * 255))) | |
return image, predictions | |
def load_example_document(img, question, model): | |
document = ImageDocument(Image.fromarray(img)) | |
preview, answer = process_question(question, document, model) | |
return document, question, preview, answer | |
with gr.Blocks() as demo: | |
gr.Markdown("# DocQuery: Query Documents w/ NLP") | |
document = gr.Variable() | |
example_question = gr.Textbox(visible=False) | |
example_image = gr.Image(visible=False) | |
gr.Markdown("## 1. Upload a file or select an example") | |
with gr.Row(equal_height=True): | |
with gr.Column(): | |
upload = gr.File(label="Upload a file", interactive=True) | |
url = gr.Textbox(label="... or a URL", interactive=True) | |
gr.Examples( | |
examples=examples, | |
inputs=[example_image, example_question], | |
) | |
gr.Markdown("## 2. Ask a question") | |
with gr.Row(equal_height=True): | |
question = gr.Textbox( | |
label="Question", | |
placeholder="e.g. What is the invoice number?", | |
lines=1, | |
max_lines=1, | |
) | |
model = gr.Radio( | |
choices=list(CHECKPOINTS.keys()), | |
value=list(CHECKPOINTS.keys())[0], | |
label="Model", | |
) | |
with gr.Row(): | |
clear_button = gr.Button("Clear", variant="secondary") | |
submit_button = gr.Button("Submit", variant="primary", elem_id="submit-button") | |
with gr.Row(): | |
image = gr.Image(visible=True) | |
with gr.Column(): | |
output = gr.JSON(label="Output") | |
clear_button.click( | |
lambda _: (None, None, None, None), | |
inputs=clear_button, | |
outputs=[image, document, question, output], | |
) | |
upload.change(fn=process_upload, inputs=[upload], outputs=[document, image, output]) | |
url.change(fn=process_path, inputs=[url], outputs=[document, image, output]) | |
question.submit( | |
fn=process_question, | |
inputs=[question, document, model], | |
outputs=[image, output], | |
) | |
submit_button.click( | |
process_question, | |
inputs=[question, document, model], | |
outputs=[image, output], | |
) | |
model.change( | |
process_question, inputs=[question, document, model], outputs=[image, output] | |
) | |
example_image.change( | |
fn=load_example_document, | |
inputs=[example_image, example_question, model], | |
outputs=[document, question, image, output], | |
) | |
gr.Markdown("### More Info") | |
gr.Markdown( | |
"DocQuery uses LayoutLMv1 fine-tuned on DocVQA, a document visual question" | |
" answering dataset, as well as SQuAD, which boosts its English-language comprehension." | |
" To use it, simply upload an image or PDF, type a question, and click 'submit', or " | |
" click one of the examples to load them." | |
) | |
gr.Markdown("[Github Repo](https://github.com/impira/docquery)") | |
if __name__ == "__main__": | |
demo.launch() | |