Spaces:
Sleeping
Sleeping
import subprocess | |
# Installing flash_attn | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
from threading import Thread | |
import spaces | |
import gradio as gr | |
import torch | |
from transformers import ( | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
StoppingCriteria, | |
StoppingCriteriaList, | |
TextIteratorStreamer | |
) | |
model = AutoModelForCausalLM.from_pretrained("THUDM/longwriter-glm4-9b", trust_remote_code=True, device_map='auto') | |
tokenizer = AutoTokenizer.from_pretrained("THUDM/longwriter-glm4-9b", trust_remote_code=True) | |
class StopOnTokens(StoppingCriteria): | |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
stop_ids = model.config.eos_token_id | |
for stop_id in stop_ids: | |
if input_ids[0][-1] == stop_id: | |
return True | |
return False | |
def predict(history, prompt, max_length, top_p, temperature): | |
stop = StopOnTokens() | |
messages = [] | |
if prompt: | |
messages.append({"role": "system", "content": prompt}) | |
for idx, (user_msg, model_msg) in enumerate(history): | |
if prompt and idx == 0: | |
continue | |
if idx == len(history) - 1 and not model_msg: | |
query = user_msg | |
break | |
if user_msg: | |
messages.append({"role": "user", "content": user_msg}) | |
if model_msg: | |
messages.append({"role": "assistant", "content": model_msg}) | |
model_inputs = tokenizer.build_chat_input(query, history=messages, role='user').input_ids.to( | |
next(model.parameters()).device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=600, skip_prompt=True, skip_special_tokens=True) | |
eos_token_id = [tokenizer.eos_token_id, tokenizer.get_command("<|user|>"), | |
tokenizer.get_command("<|observation|>")] | |
generate_kwargs = { | |
"input_ids": model_inputs, | |
"streamer": streamer, | |
"max_new_tokens": max_length, | |
"do_sample": True, | |
"top_p": top_p, | |
"temperature": temperature, | |
"stopping_criteria": StoppingCriteriaList([stop]), | |
"repetition_penalty": 1, | |
"eos_token_id": eos_token_id, | |
} | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
for new_token in streamer: | |
if new_token == '<|user|>': | |
continue | |
elif new_token: | |
history[-1][1] += new_token | |
yield history | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
""" | |
<div style="text-align: center; font-size: 32px; font-weight: bold; margin-bottom: 20px;"> | |
longwriter-glm4-9b Huggingface Space🤗 | |
</div> | |
<div style="text-align: center;"> | |
<a href="https://huggingface.co/THUDM/LongWriter-glm4-9b">🤗 Model Hub</a> | | |
<a href="https://github.com/THUDM/LongWriter">🌐 Github</a> | | |
<a href="https://arxiv.org/pdf/2408.07055">📜 arxiv </a> | |
</div> | |
""" | |
) | |
chatbot = gr.Chatbot() | |
with gr.Row(): | |
with gr.Column(scale=3): | |
with gr.Column(scale=12): | |
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10, container=False) | |
with gr.Column(min_width=32, scale=1): | |
submitBtn = gr.Button("Submit") | |
with gr.Column(scale=1): | |
prompt_input = gr.Textbox(show_label=False, placeholder="Prompt", lines=10, container=False) | |
pBtn = gr.Button("Set Prompt") | |
with gr.Column(scale=1): | |
emptyBtn = gr.Button("Clear History") | |
max_length = gr.Slider(0, 10000000, value=10000, step=1.0, label="Maximum length", interactive=True) | |
top_p = gr.Slider(0, 1, value=0.8, step=0.01, label="Top P", interactive=True) | |
temperature = gr.Slider(0.01, 1, value=0.6, step=0.01, label="Temperature", interactive=True) | |
def user(query, history): | |
return "", history + [[query, ""]] | |
def set_prompt(prompt_text): | |
return [[prompt_text, "Set prompt successfully"]] | |
pBtn.click(set_prompt, inputs=[prompt_input], outputs=chatbot) | |
submitBtn.click(user, [user_input, chatbot], [user_input, chatbot], queue=False).then( | |
predict, [chatbot, prompt_input, max_length, top_p, temperature], chatbot | |
) | |
emptyBtn.click(lambda: (None, None), None, [chatbot, prompt_input], queue=False) | |
demo.queue() | |
demo.launch() | |