imkhan107 commited on
Commit
315fa91
1 Parent(s): 65ec5fb

Upload 98 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. data/Argoverse.yaml +67 -0
  2. data/GlobalWheat2020.yaml +54 -0
  3. data/Objects365.yaml +114 -0
  4. data/SKU-110K.yaml +53 -0
  5. data/VOC.yaml +81 -0
  6. data/VisDrone.yaml +61 -0
  7. data/coco.yaml +45 -0
  8. data/coco128.yaml +30 -0
  9. data/hyps/hyp.Objects365.yaml +34 -0
  10. data/hyps/hyp.VOC.yaml +40 -0
  11. data/hyps/hyp.scratch-high.yaml +34 -0
  12. data/hyps/hyp.scratch-low.yaml +34 -0
  13. data/hyps/hyp.scratch-med.yaml +34 -0
  14. data/images/bus.jpg +0 -0
  15. data/images/zidane.jpg +0 -0
  16. data/scripts/download_weights.sh +20 -0
  17. data/scripts/get_coco.sh +27 -0
  18. data/scripts/get_coco128.sh +17 -0
  19. data/xView.yaml +102 -0
  20. models/__init__.py +0 -0
  21. models/__pycache__/__init__.cpython-310.pyc +0 -0
  22. models/__pycache__/common.cpython-310.pyc +0 -0
  23. models/__pycache__/experimental.cpython-310.pyc +0 -0
  24. models/__pycache__/yolo.cpython-310.pyc +0 -0
  25. models/common.py +762 -0
  26. models/experimental.py +102 -0
  27. models/hub/anchors.yaml +59 -0
  28. models/hub/yolov3-spp.yaml +51 -0
  29. models/hub/yolov3-tiny.yaml +41 -0
  30. models/hub/yolov3.yaml +51 -0
  31. models/hub/yolov5-bifpn.yaml +48 -0
  32. models/hub/yolov5-fpn.yaml +42 -0
  33. models/hub/yolov5-p2.yaml +54 -0
  34. models/hub/yolov5-p34.yaml +41 -0
  35. models/hub/yolov5-p6.yaml +56 -0
  36. models/hub/yolov5-p7.yaml +67 -0
  37. models/hub/yolov5-panet.yaml +48 -0
  38. models/hub/yolov5l6.yaml +60 -0
  39. models/hub/yolov5m6.yaml +60 -0
  40. models/hub/yolov5n6.yaml +60 -0
  41. models/hub/yolov5s-ghost.yaml +48 -0
  42. models/hub/yolov5s-transformer.yaml +48 -0
  43. models/hub/yolov5s6.yaml +60 -0
  44. models/hub/yolov5x6.yaml +60 -0
  45. models/tf.py +574 -0
  46. models/yolo.py +337 -0
  47. models/yolov5l.yaml +48 -0
  48. models/yolov5m.yaml +48 -0
  49. models/yolov5n.yaml +48 -0
  50. models/yolov5s.yaml +48 -0
data/Argoverse.yaml ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ # Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/ by Argo AI
3
+ # Example usage: python train.py --data Argoverse.yaml
4
+ # parent
5
+ # ├── yolov5
6
+ # └── datasets
7
+ # └── Argoverse ← downloads here (31.3 GB)
8
+
9
+
10
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
+ path: ../datasets/Argoverse # dataset root dir
12
+ train: Argoverse-1.1/images/train/ # train images (relative to 'path') 39384 images
13
+ val: Argoverse-1.1/images/val/ # val images (relative to 'path') 15062 images
14
+ test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview
15
+
16
+ # Classes
17
+ nc: 8 # number of classes
18
+ names: ['person', 'bicycle', 'car', 'motorcycle', 'bus', 'truck', 'traffic_light', 'stop_sign'] # class names
19
+
20
+
21
+ # Download script/URL (optional) ---------------------------------------------------------------------------------------
22
+ download: |
23
+ import json
24
+
25
+ from tqdm import tqdm
26
+ from utils.general import download, Path
27
+
28
+
29
+ def argoverse2yolo(set):
30
+ labels = {}
31
+ a = json.load(open(set, "rb"))
32
+ for annot in tqdm(a['annotations'], desc=f"Converting {set} to YOLOv5 format..."):
33
+ img_id = annot['image_id']
34
+ img_name = a['images'][img_id]['name']
35
+ img_label_name = f'{img_name[:-3]}txt'
36
+
37
+ cls = annot['category_id'] # instance class id
38
+ x_center, y_center, width, height = annot['bbox']
39
+ x_center = (x_center + width / 2) / 1920.0 # offset and scale
40
+ y_center = (y_center + height / 2) / 1200.0 # offset and scale
41
+ width /= 1920.0 # scale
42
+ height /= 1200.0 # scale
43
+
44
+ img_dir = set.parents[2] / 'Argoverse-1.1' / 'labels' / a['seq_dirs'][a['images'][annot['image_id']]['sid']]
45
+ if not img_dir.exists():
46
+ img_dir.mkdir(parents=True, exist_ok=True)
47
+
48
+ k = str(img_dir / img_label_name)
49
+ if k not in labels:
50
+ labels[k] = []
51
+ labels[k].append(f"{cls} {x_center} {y_center} {width} {height}\n")
52
+
53
+ for k in labels:
54
+ with open(k, "w") as f:
55
+ f.writelines(labels[k])
56
+
57
+
58
+ # Download
59
+ dir = Path('../datasets/Argoverse') # dataset root dir
60
+ urls = ['https://argoverse-hd.s3.us-east-2.amazonaws.com/Argoverse-HD-Full.zip']
61
+ download(urls, dir=dir, delete=False)
62
+
63
+ # Convert
64
+ annotations_dir = 'Argoverse-HD/annotations/'
65
+ (dir / 'Argoverse-1.1' / 'tracking').rename(dir / 'Argoverse-1.1' / 'images') # rename 'tracking' to 'images'
66
+ for d in "train.json", "val.json":
67
+ argoverse2yolo(dir / annotations_dir / d) # convert VisDrone annotations to YOLO labels
data/GlobalWheat2020.yaml ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ # Global Wheat 2020 dataset http://www.global-wheat.com/ by University of Saskatchewan
3
+ # Example usage: python train.py --data GlobalWheat2020.yaml
4
+ # parent
5
+ # ├── yolov5
6
+ # └── datasets
7
+ # └── GlobalWheat2020 ← downloads here (7.0 GB)
8
+
9
+
10
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
+ path: ../datasets/GlobalWheat2020 # dataset root dir
12
+ train: # train images (relative to 'path') 3422 images
13
+ - images/arvalis_1
14
+ - images/arvalis_2
15
+ - images/arvalis_3
16
+ - images/ethz_1
17
+ - images/rres_1
18
+ - images/inrae_1
19
+ - images/usask_1
20
+ val: # val images (relative to 'path') 748 images (WARNING: train set contains ethz_1)
21
+ - images/ethz_1
22
+ test: # test images (optional) 1276 images
23
+ - images/utokyo_1
24
+ - images/utokyo_2
25
+ - images/nau_1
26
+ - images/uq_1
27
+
28
+ # Classes
29
+ nc: 1 # number of classes
30
+ names: ['wheat_head'] # class names
31
+
32
+
33
+ # Download script/URL (optional) ---------------------------------------------------------------------------------------
34
+ download: |
35
+ from utils.general import download, Path
36
+
37
+
38
+ # Download
39
+ dir = Path(yaml['path']) # dataset root dir
40
+ urls = ['https://zenodo.org/record/4298502/files/global-wheat-codalab-official.zip',
41
+ 'https://github.com/ultralytics/yolov5/releases/download/v1.0/GlobalWheat2020_labels.zip']
42
+ download(urls, dir=dir)
43
+
44
+ # Make Directories
45
+ for p in 'annotations', 'images', 'labels':
46
+ (dir / p).mkdir(parents=True, exist_ok=True)
47
+
48
+ # Move
49
+ for p in 'arvalis_1', 'arvalis_2', 'arvalis_3', 'ethz_1', 'rres_1', 'inrae_1', 'usask_1', \
50
+ 'utokyo_1', 'utokyo_2', 'nau_1', 'uq_1':
51
+ (dir / p).rename(dir / 'images' / p) # move to /images
52
+ f = (dir / p).with_suffix('.json') # json file
53
+ if f.exists():
54
+ f.rename((dir / 'annotations' / p).with_suffix('.json')) # move to /annotations
data/Objects365.yaml ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ # Objects365 dataset https://www.objects365.org/ by Megvii
3
+ # Example usage: python train.py --data Objects365.yaml
4
+ # parent
5
+ # ├── yolov5
6
+ # └── datasets
7
+ # └── Objects365 ← downloads here (712 GB = 367G data + 345G zips)
8
+
9
+
10
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
+ path: ../datasets/Objects365 # dataset root dir
12
+ train: images/train # train images (relative to 'path') 1742289 images
13
+ val: images/val # val images (relative to 'path') 80000 images
14
+ test: # test images (optional)
15
+
16
+ # Classes
17
+ nc: 365 # number of classes
18
+ names: ['Person', 'Sneakers', 'Chair', 'Other Shoes', 'Hat', 'Car', 'Lamp', 'Glasses', 'Bottle', 'Desk', 'Cup',
19
+ 'Street Lights', 'Cabinet/shelf', 'Handbag/Satchel', 'Bracelet', 'Plate', 'Picture/Frame', 'Helmet', 'Book',
20
+ 'Gloves', 'Storage box', 'Boat', 'Leather Shoes', 'Flower', 'Bench', 'Potted Plant', 'Bowl/Basin', 'Flag',
21
+ 'Pillow', 'Boots', 'Vase', 'Microphone', 'Necklace', 'Ring', 'SUV', 'Wine Glass', 'Belt', 'Monitor/TV',
22
+ 'Backpack', 'Umbrella', 'Traffic Light', 'Speaker', 'Watch', 'Tie', 'Trash bin Can', 'Slippers', 'Bicycle',
23
+ 'Stool', 'Barrel/bucket', 'Van', 'Couch', 'Sandals', 'Basket', 'Drum', 'Pen/Pencil', 'Bus', 'Wild Bird',
24
+ 'High Heels', 'Motorcycle', 'Guitar', 'Carpet', 'Cell Phone', 'Bread', 'Camera', 'Canned', 'Truck',
25
+ 'Traffic cone', 'Cymbal', 'Lifesaver', 'Towel', 'Stuffed Toy', 'Candle', 'Sailboat', 'Laptop', 'Awning',
26
+ 'Bed', 'Faucet', 'Tent', 'Horse', 'Mirror', 'Power outlet', 'Sink', 'Apple', 'Air Conditioner', 'Knife',
27
+ 'Hockey Stick', 'Paddle', 'Pickup Truck', 'Fork', 'Traffic Sign', 'Balloon', 'Tripod', 'Dog', 'Spoon', 'Clock',
28
+ 'Pot', 'Cow', 'Cake', 'Dinning Table', 'Sheep', 'Hanger', 'Blackboard/Whiteboard', 'Napkin', 'Other Fish',
29
+ 'Orange/Tangerine', 'Toiletry', 'Keyboard', 'Tomato', 'Lantern', 'Machinery Vehicle', 'Fan',
30
+ 'Green Vegetables', 'Banana', 'Baseball Glove', 'Airplane', 'Mouse', 'Train', 'Pumpkin', 'Soccer', 'Skiboard',
31
+ 'Luggage', 'Nightstand', 'Tea pot', 'Telephone', 'Trolley', 'Head Phone', 'Sports Car', 'Stop Sign',
32
+ 'Dessert', 'Scooter', 'Stroller', 'Crane', 'Remote', 'Refrigerator', 'Oven', 'Lemon', 'Duck', 'Baseball Bat',
33
+ 'Surveillance Camera', 'Cat', 'Jug', 'Broccoli', 'Piano', 'Pizza', 'Elephant', 'Skateboard', 'Surfboard',
34
+ 'Gun', 'Skating and Skiing shoes', 'Gas stove', 'Donut', 'Bow Tie', 'Carrot', 'Toilet', 'Kite', 'Strawberry',
35
+ 'Other Balls', 'Shovel', 'Pepper', 'Computer Box', 'Toilet Paper', 'Cleaning Products', 'Chopsticks',
36
+ 'Microwave', 'Pigeon', 'Baseball', 'Cutting/chopping Board', 'Coffee Table', 'Side Table', 'Scissors',
37
+ 'Marker', 'Pie', 'Ladder', 'Snowboard', 'Cookies', 'Radiator', 'Fire Hydrant', 'Basketball', 'Zebra', 'Grape',
38
+ 'Giraffe', 'Potato', 'Sausage', 'Tricycle', 'Violin', 'Egg', 'Fire Extinguisher', 'Candy', 'Fire Truck',
39
+ 'Billiards', 'Converter', 'Bathtub', 'Wheelchair', 'Golf Club', 'Briefcase', 'Cucumber', 'Cigar/Cigarette',
40
+ 'Paint Brush', 'Pear', 'Heavy Truck', 'Hamburger', 'Extractor', 'Extension Cord', 'Tong', 'Tennis Racket',
41
+ 'Folder', 'American Football', 'earphone', 'Mask', 'Kettle', 'Tennis', 'Ship', 'Swing', 'Coffee Machine',
42
+ 'Slide', 'Carriage', 'Onion', 'Green beans', 'Projector', 'Frisbee', 'Washing Machine/Drying Machine',
43
+ 'Chicken', 'Printer', 'Watermelon', 'Saxophone', 'Tissue', 'Toothbrush', 'Ice cream', 'Hot-air balloon',
44
+ 'Cello', 'French Fries', 'Scale', 'Trophy', 'Cabbage', 'Hot dog', 'Blender', 'Peach', 'Rice', 'Wallet/Purse',
45
+ 'Volleyball', 'Deer', 'Goose', 'Tape', 'Tablet', 'Cosmetics', 'Trumpet', 'Pineapple', 'Golf Ball',
46
+ 'Ambulance', 'Parking meter', 'Mango', 'Key', 'Hurdle', 'Fishing Rod', 'Medal', 'Flute', 'Brush', 'Penguin',
47
+ 'Megaphone', 'Corn', 'Lettuce', 'Garlic', 'Swan', 'Helicopter', 'Green Onion', 'Sandwich', 'Nuts',
48
+ 'Speed Limit Sign', 'Induction Cooker', 'Broom', 'Trombone', 'Plum', 'Rickshaw', 'Goldfish', 'Kiwi fruit',
49
+ 'Router/modem', 'Poker Card', 'Toaster', 'Shrimp', 'Sushi', 'Cheese', 'Notepaper', 'Cherry', 'Pliers', 'CD',
50
+ 'Pasta', 'Hammer', 'Cue', 'Avocado', 'Hamimelon', 'Flask', 'Mushroom', 'Screwdriver', 'Soap', 'Recorder',
51
+ 'Bear', 'Eggplant', 'Board Eraser', 'Coconut', 'Tape Measure/Ruler', 'Pig', 'Showerhead', 'Globe', 'Chips',
52
+ 'Steak', 'Crosswalk Sign', 'Stapler', 'Camel', 'Formula 1', 'Pomegranate', 'Dishwasher', 'Crab',
53
+ 'Hoverboard', 'Meat ball', 'Rice Cooker', 'Tuba', 'Calculator', 'Papaya', 'Antelope', 'Parrot', 'Seal',
54
+ 'Butterfly', 'Dumbbell', 'Donkey', 'Lion', 'Urinal', 'Dolphin', 'Electric Drill', 'Hair Dryer', 'Egg tart',
55
+ 'Jellyfish', 'Treadmill', 'Lighter', 'Grapefruit', 'Game board', 'Mop', 'Radish', 'Baozi', 'Target', 'French',
56
+ 'Spring Rolls', 'Monkey', 'Rabbit', 'Pencil Case', 'Yak', 'Red Cabbage', 'Binoculars', 'Asparagus', 'Barbell',
57
+ 'Scallop', 'Noddles', 'Comb', 'Dumpling', 'Oyster', 'Table Tennis paddle', 'Cosmetics Brush/Eyeliner Pencil',
58
+ 'Chainsaw', 'Eraser', 'Lobster', 'Durian', 'Okra', 'Lipstick', 'Cosmetics Mirror', 'Curling', 'Table Tennis']
59
+
60
+
61
+ # Download script/URL (optional) ---------------------------------------------------------------------------------------
62
+ download: |
63
+ from tqdm import tqdm
64
+
65
+ from utils.general import Path, check_requirements, download, np, xyxy2xywhn
66
+
67
+ check_requirements(('pycocotools>=2.0',))
68
+ from pycocotools.coco import COCO
69
+
70
+ # Make Directories
71
+ dir = Path(yaml['path']) # dataset root dir
72
+ for p in 'images', 'labels':
73
+ (dir / p).mkdir(parents=True, exist_ok=True)
74
+ for q in 'train', 'val':
75
+ (dir / p / q).mkdir(parents=True, exist_ok=True)
76
+
77
+ # Train, Val Splits
78
+ for split, patches in [('train', 50 + 1), ('val', 43 + 1)]:
79
+ print(f"Processing {split} in {patches} patches ...")
80
+ images, labels = dir / 'images' / split, dir / 'labels' / split
81
+
82
+ # Download
83
+ url = f"https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/{split}/"
84
+ if split == 'train':
85
+ download([f'{url}zhiyuan_objv2_{split}.tar.gz'], dir=dir, delete=False) # annotations json
86
+ download([f'{url}patch{i}.tar.gz' for i in range(patches)], dir=images, curl=True, delete=False, threads=8)
87
+ elif split == 'val':
88
+ download([f'{url}zhiyuan_objv2_{split}.json'], dir=dir, delete=False) # annotations json
89
+ download([f'{url}images/v1/patch{i}.tar.gz' for i in range(15 + 1)], dir=images, curl=True, delete=False, threads=8)
90
+ download([f'{url}images/v2/patch{i}.tar.gz' for i in range(16, patches)], dir=images, curl=True, delete=False, threads=8)
91
+
92
+ # Move
93
+ for f in tqdm(images.rglob('*.jpg'), desc=f'Moving {split} images'):
94
+ f.rename(images / f.name) # move to /images/{split}
95
+
96
+ # Labels
97
+ coco = COCO(dir / f'zhiyuan_objv2_{split}.json')
98
+ names = [x["name"] for x in coco.loadCats(coco.getCatIds())]
99
+ for cid, cat in enumerate(names):
100
+ catIds = coco.getCatIds(catNms=[cat])
101
+ imgIds = coco.getImgIds(catIds=catIds)
102
+ for im in tqdm(coco.loadImgs(imgIds), desc=f'Class {cid + 1}/{len(names)} {cat}'):
103
+ width, height = im["width"], im["height"]
104
+ path = Path(im["file_name"]) # image filename
105
+ try:
106
+ with open(labels / path.with_suffix('.txt').name, 'a') as file:
107
+ annIds = coco.getAnnIds(imgIds=im["id"], catIds=catIds, iscrowd=None)
108
+ for a in coco.loadAnns(annIds):
109
+ x, y, w, h = a['bbox'] # bounding box in xywh (xy top-left corner)
110
+ xyxy = np.array([x, y, x + w, y + h])[None] # pixels(1,4)
111
+ x, y, w, h = xyxy2xywhn(xyxy, w=width, h=height, clip=True)[0] # normalized and clipped
112
+ file.write(f"{cid} {x:.5f} {y:.5f} {w:.5f} {h:.5f}\n")
113
+ except Exception as e:
114
+ print(e)
data/SKU-110K.yaml ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ # SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19 by Trax Retail
3
+ # Example usage: python train.py --data SKU-110K.yaml
4
+ # parent
5
+ # ├── yolov5
6
+ # └── datasets
7
+ # └── SKU-110K ← downloads here (13.6 GB)
8
+
9
+
10
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
+ path: ../datasets/SKU-110K # dataset root dir
12
+ train: train.txt # train images (relative to 'path') 8219 images
13
+ val: val.txt # val images (relative to 'path') 588 images
14
+ test: test.txt # test images (optional) 2936 images
15
+
16
+ # Classes
17
+ nc: 1 # number of classes
18
+ names: ['object'] # class names
19
+
20
+
21
+ # Download script/URL (optional) ---------------------------------------------------------------------------------------
22
+ download: |
23
+ import shutil
24
+ from tqdm import tqdm
25
+ from utils.general import np, pd, Path, download, xyxy2xywh
26
+
27
+
28
+ # Download
29
+ dir = Path(yaml['path']) # dataset root dir
30
+ parent = Path(dir.parent) # download dir
31
+ urls = ['http://trax-geometry.s3.amazonaws.com/cvpr_challenge/SKU110K_fixed.tar.gz']
32
+ download(urls, dir=parent, delete=False)
33
+
34
+ # Rename directories
35
+ if dir.exists():
36
+ shutil.rmtree(dir)
37
+ (parent / 'SKU110K_fixed').rename(dir) # rename dir
38
+ (dir / 'labels').mkdir(parents=True, exist_ok=True) # create labels dir
39
+
40
+ # Convert labels
41
+ names = 'image', 'x1', 'y1', 'x2', 'y2', 'class', 'image_width', 'image_height' # column names
42
+ for d in 'annotations_train.csv', 'annotations_val.csv', 'annotations_test.csv':
43
+ x = pd.read_csv(dir / 'annotations' / d, names=names).values # annotations
44
+ images, unique_images = x[:, 0], np.unique(x[:, 0])
45
+ with open((dir / d).with_suffix('.txt').__str__().replace('annotations_', ''), 'w') as f:
46
+ f.writelines(f'./images/{s}\n' for s in unique_images)
47
+ for im in tqdm(unique_images, desc=f'Converting {dir / d}'):
48
+ cls = 0 # single-class dataset
49
+ with open((dir / 'labels' / im).with_suffix('.txt'), 'a') as f:
50
+ for r in x[images == im]:
51
+ w, h = r[6], r[7] # image width, height
52
+ xywh = xyxy2xywh(np.array([[r[1] / w, r[2] / h, r[3] / w, r[4] / h]]))[0] # instance
53
+ f.write(f"{cls} {xywh[0]:.5f} {xywh[1]:.5f} {xywh[2]:.5f} {xywh[3]:.5f}\n") # write label
data/VOC.yaml ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ # PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC by University of Oxford
3
+ # Example usage: python train.py --data VOC.yaml
4
+ # parent
5
+ # ├── yolov5
6
+ # └── datasets
7
+ # └── VOC ← downloads here (2.8 GB)
8
+
9
+
10
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
+ path: ../datasets/VOC
12
+ train: # train images (relative to 'path') 16551 images
13
+ - images/train2012
14
+ - images/train2007
15
+ - images/val2012
16
+ - images/val2007
17
+ val: # val images (relative to 'path') 4952 images
18
+ - images/test2007
19
+ test: # test images (optional)
20
+ - images/test2007
21
+
22
+ # Classes
23
+ nc: 20 # number of classes
24
+ names: ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog',
25
+ 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'] # class names
26
+
27
+
28
+ # Download script/URL (optional) ---------------------------------------------------------------------------------------
29
+ download: |
30
+ import xml.etree.ElementTree as ET
31
+
32
+ from tqdm import tqdm
33
+ from utils.general import download, Path
34
+
35
+
36
+ def convert_label(path, lb_path, year, image_id):
37
+ def convert_box(size, box):
38
+ dw, dh = 1. / size[0], 1. / size[1]
39
+ x, y, w, h = (box[0] + box[1]) / 2.0 - 1, (box[2] + box[3]) / 2.0 - 1, box[1] - box[0], box[3] - box[2]
40
+ return x * dw, y * dh, w * dw, h * dh
41
+
42
+ in_file = open(path / f'VOC{year}/Annotations/{image_id}.xml')
43
+ out_file = open(lb_path, 'w')
44
+ tree = ET.parse(in_file)
45
+ root = tree.getroot()
46
+ size = root.find('size')
47
+ w = int(size.find('width').text)
48
+ h = int(size.find('height').text)
49
+
50
+ for obj in root.iter('object'):
51
+ cls = obj.find('name').text
52
+ if cls in yaml['names'] and not int(obj.find('difficult').text) == 1:
53
+ xmlbox = obj.find('bndbox')
54
+ bb = convert_box((w, h), [float(xmlbox.find(x).text) for x in ('xmin', 'xmax', 'ymin', 'ymax')])
55
+ cls_id = yaml['names'].index(cls) # class id
56
+ out_file.write(" ".join([str(a) for a in (cls_id, *bb)]) + '\n')
57
+
58
+
59
+ # Download
60
+ dir = Path(yaml['path']) # dataset root dir
61
+ url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
62
+ urls = [f'{url}VOCtrainval_06-Nov-2007.zip', # 446MB, 5012 images
63
+ f'{url}VOCtest_06-Nov-2007.zip', # 438MB, 4953 images
64
+ f'{url}VOCtrainval_11-May-2012.zip'] # 1.95GB, 17126 images
65
+ download(urls, dir=dir / 'images', delete=False, curl=True, threads=3)
66
+
67
+ # Convert
68
+ path = dir / 'images/VOCdevkit'
69
+ for year, image_set in ('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test'):
70
+ imgs_path = dir / 'images' / f'{image_set}{year}'
71
+ lbs_path = dir / 'labels' / f'{image_set}{year}'
72
+ imgs_path.mkdir(exist_ok=True, parents=True)
73
+ lbs_path.mkdir(exist_ok=True, parents=True)
74
+
75
+ with open(path / f'VOC{year}/ImageSets/Main/{image_set}.txt') as f:
76
+ image_ids = f.read().strip().split()
77
+ for id in tqdm(image_ids, desc=f'{image_set}{year}'):
78
+ f = path / f'VOC{year}/JPEGImages/{id}.jpg' # old img path
79
+ lb_path = (lbs_path / f.name).with_suffix('.txt') # new label path
80
+ f.rename(imgs_path / f.name) # move image
81
+ convert_label(path, lb_path, year, id) # convert labels to YOLO format
data/VisDrone.yaml ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ # VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset by Tianjin University
3
+ # Example usage: python train.py --data VisDrone.yaml
4
+ # parent
5
+ # ├── yolov5
6
+ # └── datasets
7
+ # └── VisDrone ← downloads here (2.3 GB)
8
+
9
+
10
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
+ path: ../datasets/VisDrone # dataset root dir
12
+ train: VisDrone2019-DET-train/images # train images (relative to 'path') 6471 images
13
+ val: VisDrone2019-DET-val/images # val images (relative to 'path') 548 images
14
+ test: VisDrone2019-DET-test-dev/images # test images (optional) 1610 images
15
+
16
+ # Classes
17
+ nc: 10 # number of classes
18
+ names: ['pedestrian', 'people', 'bicycle', 'car', 'van', 'truck', 'tricycle', 'awning-tricycle', 'bus', 'motor']
19
+
20
+
21
+ # Download script/URL (optional) ---------------------------------------------------------------------------------------
22
+ download: |
23
+ from utils.general import download, os, Path
24
+
25
+ def visdrone2yolo(dir):
26
+ from PIL import Image
27
+ from tqdm import tqdm
28
+
29
+ def convert_box(size, box):
30
+ # Convert VisDrone box to YOLO xywh box
31
+ dw = 1. / size[0]
32
+ dh = 1. / size[1]
33
+ return (box[0] + box[2] / 2) * dw, (box[1] + box[3] / 2) * dh, box[2] * dw, box[3] * dh
34
+
35
+ (dir / 'labels').mkdir(parents=True, exist_ok=True) # make labels directory
36
+ pbar = tqdm((dir / 'annotations').glob('*.txt'), desc=f'Converting {dir}')
37
+ for f in pbar:
38
+ img_size = Image.open((dir / 'images' / f.name).with_suffix('.jpg')).size
39
+ lines = []
40
+ with open(f, 'r') as file: # read annotation.txt
41
+ for row in [x.split(',') for x in file.read().strip().splitlines()]:
42
+ if row[4] == '0': # VisDrone 'ignored regions' class 0
43
+ continue
44
+ cls = int(row[5]) - 1
45
+ box = convert_box(img_size, tuple(map(int, row[:4])))
46
+ lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n")
47
+ with open(str(f).replace(os.sep + 'annotations' + os.sep, os.sep + 'labels' + os.sep), 'w') as fl:
48
+ fl.writelines(lines) # write label.txt
49
+
50
+
51
+ # Download
52
+ dir = Path(yaml['path']) # dataset root dir
53
+ urls = ['https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-train.zip',
54
+ 'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-val.zip',
55
+ 'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-dev.zip',
56
+ 'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-challenge.zip']
57
+ download(urls, dir=dir, curl=True, threads=4)
58
+
59
+ # Convert
60
+ for d in 'VisDrone2019-DET-train', 'VisDrone2019-DET-val', 'VisDrone2019-DET-test-dev':
61
+ visdrone2yolo(dir / d) # convert VisDrone annotations to YOLO labels
data/coco.yaml ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ # COCO 2017 dataset http://cocodataset.org by Microsoft
3
+ # Example usage: python train.py --data coco.yaml
4
+ # parent
5
+ # ├── yolov5
6
+ # └── datasets
7
+ # └── coco ← downloads here (20.1 GB)
8
+
9
+
10
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
+ path: ../datasets/coco # dataset root dir
12
+ train: train2017.txt # train images (relative to 'path') 118287 images
13
+ val: val2017.txt # val images (relative to 'path') 5000 images
14
+ test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
15
+
16
+ # Classes
17
+ nc: 80 # number of classes
18
+ names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
19
+ 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
20
+ 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
21
+ 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
22
+ 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
23
+ 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
24
+ 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
25
+ 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
26
+ 'hair drier', 'toothbrush'] # class names
27
+
28
+
29
+ # Download script/URL (optional)
30
+ download: |
31
+ from utils.general import download, Path
32
+
33
+
34
+ # Download labels
35
+ segments = False # segment or box labels
36
+ dir = Path(yaml['path']) # dataset root dir
37
+ url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
38
+ urls = [url + ('coco2017labels-segments.zip' if segments else 'coco2017labels.zip')] # labels
39
+ download(urls, dir=dir.parent)
40
+
41
+ # Download data
42
+ urls = ['http://images.cocodataset.org/zips/train2017.zip', # 19G, 118k images
43
+ 'http://images.cocodataset.org/zips/val2017.zip', # 1G, 5k images
44
+ 'http://images.cocodataset.org/zips/test2017.zip'] # 7G, 41k images (optional)
45
+ download(urls, dir=dir / 'images', threads=3)
data/coco128.yaml ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ # COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
3
+ # Example usage: python train.py --data coco128.yaml
4
+ # parent
5
+ # ├── yolov5
6
+ # └── datasets
7
+ # └── coco128 ← downloads here (7 MB)
8
+
9
+
10
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
+ path: ../datasets/coco128 # dataset root dir
12
+ train: images/train2017 # train images (relative to 'path') 128 images
13
+ val: images/train2017 # val images (relative to 'path') 128 images
14
+ test: # test images (optional)
15
+
16
+ # Classes
17
+ nc: 80 # number of classes
18
+ names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
19
+ 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
20
+ 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
21
+ 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
22
+ 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
23
+ 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
24
+ 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
25
+ 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
26
+ 'hair drier', 'toothbrush'] # class names
27
+
28
+
29
+ # Download script/URL (optional)
30
+ download: https://ultralytics.com/assets/coco128.zip
data/hyps/hyp.Objects365.yaml ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ # Hyperparameters for Objects365 training
3
+ # python train.py --weights yolov5m.pt --data Objects365.yaml --evolve
4
+ # See Hyperparameter Evolution tutorial for details https://github.com/ultralytics/yolov5#tutorials
5
+
6
+ lr0: 0.00258
7
+ lrf: 0.17
8
+ momentum: 0.779
9
+ weight_decay: 0.00058
10
+ warmup_epochs: 1.33
11
+ warmup_momentum: 0.86
12
+ warmup_bias_lr: 0.0711
13
+ box: 0.0539
14
+ cls: 0.299
15
+ cls_pw: 0.825
16
+ obj: 0.632
17
+ obj_pw: 1.0
18
+ iou_t: 0.2
19
+ anchor_t: 3.44
20
+ anchors: 3.2
21
+ fl_gamma: 0.0
22
+ hsv_h: 0.0188
23
+ hsv_s: 0.704
24
+ hsv_v: 0.36
25
+ degrees: 0.0
26
+ translate: 0.0902
27
+ scale: 0.491
28
+ shear: 0.0
29
+ perspective: 0.0
30
+ flipud: 0.0
31
+ fliplr: 0.5
32
+ mosaic: 1.0
33
+ mixup: 0.0
34
+ copy_paste: 0.0
data/hyps/hyp.VOC.yaml ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ # Hyperparameters for VOC training
3
+ # python train.py --batch 128 --weights yolov5m6.pt --data VOC.yaml --epochs 50 --img 512 --hyp hyp.scratch-med.yaml --evolve
4
+ # See Hyperparameter Evolution tutorial for details https://github.com/ultralytics/yolov5#tutorials
5
+
6
+ # YOLOv5 Hyperparameter Evolution Results
7
+ # Best generation: 467
8
+ # Last generation: 996
9
+ # metrics/precision, metrics/recall, metrics/mAP_0.5, metrics/mAP_0.5:0.95, val/box_loss, val/obj_loss, val/cls_loss
10
+ # 0.87729, 0.85125, 0.91286, 0.72664, 0.0076739, 0.0042529, 0.0013865
11
+
12
+ lr0: 0.00334
13
+ lrf: 0.15135
14
+ momentum: 0.74832
15
+ weight_decay: 0.00025
16
+ warmup_epochs: 3.3835
17
+ warmup_momentum: 0.59462
18
+ warmup_bias_lr: 0.18657
19
+ box: 0.02
20
+ cls: 0.21638
21
+ cls_pw: 0.5
22
+ obj: 0.51728
23
+ obj_pw: 0.67198
24
+ iou_t: 0.2
25
+ anchor_t: 3.3744
26
+ fl_gamma: 0.0
27
+ hsv_h: 0.01041
28
+ hsv_s: 0.54703
29
+ hsv_v: 0.27739
30
+ degrees: 0.0
31
+ translate: 0.04591
32
+ scale: 0.75544
33
+ shear: 0.0
34
+ perspective: 0.0
35
+ flipud: 0.0
36
+ fliplr: 0.5
37
+ mosaic: 0.85834
38
+ mixup: 0.04266
39
+ copy_paste: 0.0
40
+ anchors: 3.412
data/hyps/hyp.scratch-high.yaml ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ # Hyperparameters for high-augmentation COCO training from scratch
3
+ # python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img 1280 --epochs 300
4
+ # See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
5
+
6
+ lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
7
+ lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
8
+ momentum: 0.937 # SGD momentum/Adam beta1
9
+ weight_decay: 0.0005 # optimizer weight decay 5e-4
10
+ warmup_epochs: 3.0 # warmup epochs (fractions ok)
11
+ warmup_momentum: 0.8 # warmup initial momentum
12
+ warmup_bias_lr: 0.1 # warmup initial bias lr
13
+ box: 0.05 # box loss gain
14
+ cls: 0.3 # cls loss gain
15
+ cls_pw: 1.0 # cls BCELoss positive_weight
16
+ obj: 0.7 # obj loss gain (scale with pixels)
17
+ obj_pw: 1.0 # obj BCELoss positive_weight
18
+ iou_t: 0.20 # IoU training threshold
19
+ anchor_t: 4.0 # anchor-multiple threshold
20
+ # anchors: 3 # anchors per output layer (0 to ignore)
21
+ fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
22
+ hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
23
+ hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
24
+ hsv_v: 0.4 # image HSV-Value augmentation (fraction)
25
+ degrees: 0.0 # image rotation (+/- deg)
26
+ translate: 0.1 # image translation (+/- fraction)
27
+ scale: 0.9 # image scale (+/- gain)
28
+ shear: 0.0 # image shear (+/- deg)
29
+ perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
30
+ flipud: 0.0 # image flip up-down (probability)
31
+ fliplr: 0.5 # image flip left-right (probability)
32
+ mosaic: 1.0 # image mosaic (probability)
33
+ mixup: 0.1 # image mixup (probability)
34
+ copy_paste: 0.1 # segment copy-paste (probability)
data/hyps/hyp.scratch-low.yaml ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ # Hyperparameters for low-augmentation COCO training from scratch
3
+ # python train.py --batch 64 --cfg yolov5n6.yaml --weights '' --data coco.yaml --img 640 --epochs 300 --linear
4
+ # See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
5
+
6
+ lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
7
+ lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf)
8
+ momentum: 0.937 # SGD momentum/Adam beta1
9
+ weight_decay: 0.0005 # optimizer weight decay 5e-4
10
+ warmup_epochs: 3.0 # warmup epochs (fractions ok)
11
+ warmup_momentum: 0.8 # warmup initial momentum
12
+ warmup_bias_lr: 0.1 # warmup initial bias lr
13
+ box: 0.05 # box loss gain
14
+ cls: 0.5 # cls loss gain
15
+ cls_pw: 1.0 # cls BCELoss positive_weight
16
+ obj: 1.0 # obj loss gain (scale with pixels)
17
+ obj_pw: 1.0 # obj BCELoss positive_weight
18
+ iou_t: 0.20 # IoU training threshold
19
+ anchor_t: 4.0 # anchor-multiple threshold
20
+ # anchors: 3 # anchors per output layer (0 to ignore)
21
+ fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
22
+ hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
23
+ hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
24
+ hsv_v: 0.4 # image HSV-Value augmentation (fraction)
25
+ degrees: 0.0 # image rotation (+/- deg)
26
+ translate: 0.1 # image translation (+/- fraction)
27
+ scale: 0.5 # image scale (+/- gain)
28
+ shear: 0.0 # image shear (+/- deg)
29
+ perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
30
+ flipud: 0.0 # image flip up-down (probability)
31
+ fliplr: 0.5 # image flip left-right (probability)
32
+ mosaic: 1.0 # image mosaic (probability)
33
+ mixup: 0.0 # image mixup (probability)
34
+ copy_paste: 0.0 # segment copy-paste (probability)
data/hyps/hyp.scratch-med.yaml ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ # Hyperparameters for medium-augmentation COCO training from scratch
3
+ # python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img 1280 --epochs 300
4
+ # See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
5
+
6
+ lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
7
+ lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
8
+ momentum: 0.937 # SGD momentum/Adam beta1
9
+ weight_decay: 0.0005 # optimizer weight decay 5e-4
10
+ warmup_epochs: 3.0 # warmup epochs (fractions ok)
11
+ warmup_momentum: 0.8 # warmup initial momentum
12
+ warmup_bias_lr: 0.1 # warmup initial bias lr
13
+ box: 0.05 # box loss gain
14
+ cls: 0.3 # cls loss gain
15
+ cls_pw: 1.0 # cls BCELoss positive_weight
16
+ obj: 0.7 # obj loss gain (scale with pixels)
17
+ obj_pw: 1.0 # obj BCELoss positive_weight
18
+ iou_t: 0.20 # IoU training threshold
19
+ anchor_t: 4.0 # anchor-multiple threshold
20
+ # anchors: 3 # anchors per output layer (0 to ignore)
21
+ fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
22
+ hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
23
+ hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
24
+ hsv_v: 0.4 # image HSV-Value augmentation (fraction)
25
+ degrees: 0.0 # image rotation (+/- deg)
26
+ translate: 0.1 # image translation (+/- fraction)
27
+ scale: 0.9 # image scale (+/- gain)
28
+ shear: 0.0 # image shear (+/- deg)
29
+ perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
30
+ flipud: 0.0 # image flip up-down (probability)
31
+ fliplr: 0.5 # image flip left-right (probability)
32
+ mosaic: 1.0 # image mosaic (probability)
33
+ mixup: 0.1 # image mixup (probability)
34
+ copy_paste: 0.0 # segment copy-paste (probability)
data/images/bus.jpg ADDED
data/images/zidane.jpg ADDED
data/scripts/download_weights.sh ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
3
+ # Download latest models from https://github.com/ultralytics/yolov5/releases
4
+ # Example usage: bash path/to/download_weights.sh
5
+ # parent
6
+ # └── yolov5
7
+ # ├── yolov5s.pt ← downloads here
8
+ # ├── yolov5m.pt
9
+ # └── ...
10
+
11
+ python - <<EOF
12
+ from utils.downloads import attempt_download
13
+
14
+ models = ['n', 's', 'm', 'l', 'x']
15
+ models.extend([x + '6' for x in models]) # add P6 models
16
+
17
+ for x in models:
18
+ attempt_download(f'yolov5{x}.pt')
19
+
20
+ EOF
data/scripts/get_coco.sh ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
3
+ # Download COCO 2017 dataset http://cocodataset.org
4
+ # Example usage: bash data/scripts/get_coco.sh
5
+ # parent
6
+ # ├── yolov5
7
+ # └── datasets
8
+ # └── coco ← downloads here
9
+
10
+ # Download/unzip labels
11
+ d='../datasets' # unzip directory
12
+ url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
13
+ f='coco2017labels.zip' # or 'coco2017labels-segments.zip', 68 MB
14
+ echo 'Downloading' $url$f ' ...'
15
+ curl -L $url$f -o $f && unzip -q $f -d $d && rm $f &
16
+
17
+ # Download/unzip images
18
+ d='../datasets/coco/images' # unzip directory
19
+ url=http://images.cocodataset.org/zips/
20
+ f1='train2017.zip' # 19G, 118k images
21
+ f2='val2017.zip' # 1G, 5k images
22
+ f3='test2017.zip' # 7G, 41k images (optional)
23
+ for f in $f1 $f2; do
24
+ echo 'Downloading' $url$f '...'
25
+ curl -L $url$f -o $f && unzip -q $f -d $d && rm $f &
26
+ done
27
+ wait # finish background tasks
data/scripts/get_coco128.sh ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
3
+ # Download COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017)
4
+ # Example usage: bash data/scripts/get_coco128.sh
5
+ # parent
6
+ # ├── yolov5
7
+ # └── datasets
8
+ # └── coco128 ← downloads here
9
+
10
+ # Download/unzip images and labels
11
+ d='../datasets' # unzip directory
12
+ url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
13
+ f='coco128.zip' # or 'coco128-segments.zip', 68 MB
14
+ echo 'Downloading' $url$f ' ...'
15
+ curl -L $url$f -o $f && unzip -q $f -d $d && rm $f &
16
+
17
+ wait # finish background tasks
data/xView.yaml ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ # DIUx xView 2018 Challenge https://challenge.xviewdataset.org by U.S. National Geospatial-Intelligence Agency (NGA)
3
+ # -------- DOWNLOAD DATA MANUALLY and jar xf val_images.zip to 'datasets/xView' before running train command! --------
4
+ # Example usage: python train.py --data xView.yaml
5
+ # parent
6
+ # ├── yolov5
7
+ # └── datasets
8
+ # └── xView ← downloads here (20.7 GB)
9
+
10
+
11
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
+ path: ../datasets/xView # dataset root dir
13
+ train: images/autosplit_train.txt # train images (relative to 'path') 90% of 847 train images
14
+ val: images/autosplit_val.txt # train images (relative to 'path') 10% of 847 train images
15
+
16
+ # Classes
17
+ nc: 60 # number of classes
18
+ names: ['Fixed-wing Aircraft', 'Small Aircraft', 'Cargo Plane', 'Helicopter', 'Passenger Vehicle', 'Small Car', 'Bus',
19
+ 'Pickup Truck', 'Utility Truck', 'Truck', 'Cargo Truck', 'Truck w/Box', 'Truck Tractor', 'Trailer',
20
+ 'Truck w/Flatbed', 'Truck w/Liquid', 'Crane Truck', 'Railway Vehicle', 'Passenger Car', 'Cargo Car',
21
+ 'Flat Car', 'Tank car', 'Locomotive', 'Maritime Vessel', 'Motorboat', 'Sailboat', 'Tugboat', 'Barge',
22
+ 'Fishing Vessel', 'Ferry', 'Yacht', 'Container Ship', 'Oil Tanker', 'Engineering Vehicle', 'Tower crane',
23
+ 'Container Crane', 'Reach Stacker', 'Straddle Carrier', 'Mobile Crane', 'Dump Truck', 'Haul Truck',
24
+ 'Scraper/Tractor', 'Front loader/Bulldozer', 'Excavator', 'Cement Mixer', 'Ground Grader', 'Hut/Tent', 'Shed',
25
+ 'Building', 'Aircraft Hangar', 'Damaged Building', 'Facility', 'Construction Site', 'Vehicle Lot', 'Helipad',
26
+ 'Storage Tank', 'Shipping container lot', 'Shipping Container', 'Pylon', 'Tower'] # class names
27
+
28
+
29
+ # Download script/URL (optional) ---------------------------------------------------------------------------------------
30
+ download: |
31
+ import json
32
+ import os
33
+ from pathlib import Path
34
+
35
+ import numpy as np
36
+ from PIL import Image
37
+ from tqdm import tqdm
38
+
39
+ from utils.datasets import autosplit
40
+ from utils.general import download, xyxy2xywhn
41
+
42
+
43
+ def convert_labels(fname=Path('xView/xView_train.geojson')):
44
+ # Convert xView geoJSON labels to YOLO format
45
+ path = fname.parent
46
+ with open(fname) as f:
47
+ print(f'Loading {fname}...')
48
+ data = json.load(f)
49
+
50
+ # Make dirs
51
+ labels = Path(path / 'labels' / 'train')
52
+ os.system(f'rm -rf {labels}')
53
+ labels.mkdir(parents=True, exist_ok=True)
54
+
55
+ # xView classes 11-94 to 0-59
56
+ xview_class2index = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, -1, 3, -1, 4, 5, 6, 7, 8, -1, 9, 10, 11,
57
+ 12, 13, 14, 15, -1, -1, 16, 17, 18, 19, 20, 21, 22, -1, 23, 24, 25, -1, 26, 27, -1, 28, -1,
58
+ 29, 30, 31, 32, 33, 34, 35, 36, 37, -1, 38, 39, 40, 41, 42, 43, 44, 45, -1, -1, -1, -1, 46,
59
+ 47, 48, 49, -1, 50, 51, -1, 52, -1, -1, -1, 53, 54, -1, 55, -1, -1, 56, -1, 57, -1, 58, 59]
60
+
61
+ shapes = {}
62
+ for feature in tqdm(data['features'], desc=f'Converting {fname}'):
63
+ p = feature['properties']
64
+ if p['bounds_imcoords']:
65
+ id = p['image_id']
66
+ file = path / 'train_images' / id
67
+ if file.exists(): # 1395.tif missing
68
+ try:
69
+ box = np.array([int(num) for num in p['bounds_imcoords'].split(",")])
70
+ assert box.shape[0] == 4, f'incorrect box shape {box.shape[0]}'
71
+ cls = p['type_id']
72
+ cls = xview_class2index[int(cls)] # xView class to 0-60
73
+ assert 59 >= cls >= 0, f'incorrect class index {cls}'
74
+
75
+ # Write YOLO label
76
+ if id not in shapes:
77
+ shapes[id] = Image.open(file).size
78
+ box = xyxy2xywhn(box[None].astype(np.float), w=shapes[id][0], h=shapes[id][1], clip=True)
79
+ with open((labels / id).with_suffix('.txt'), 'a') as f:
80
+ f.write(f"{cls} {' '.join(f'{x:.6f}' for x in box[0])}\n") # write label.txt
81
+ except Exception as e:
82
+ print(f'WARNING: skipping one label for {file}: {e}')
83
+
84
+
85
+ # Download manually from https://challenge.xviewdataset.org
86
+ dir = Path(yaml['path']) # dataset root dir
87
+ # urls = ['https://d307kc0mrhucc3.cloudfront.net/train_labels.zip', # train labels
88
+ # 'https://d307kc0mrhucc3.cloudfront.net/train_images.zip', # 15G, 847 train images
89
+ # 'https://d307kc0mrhucc3.cloudfront.net/val_images.zip'] # 5G, 282 val images (no labels)
90
+ # download(urls, dir=dir, delete=False)
91
+
92
+ # Convert labels
93
+ convert_labels(dir / 'xView_train.geojson')
94
+
95
+ # Move images
96
+ images = Path(dir / 'images')
97
+ images.mkdir(parents=True, exist_ok=True)
98
+ Path(dir / 'train_images').rename(dir / 'images' / 'train')
99
+ Path(dir / 'val_images').rename(dir / 'images' / 'val')
100
+
101
+ # Split
102
+ autosplit(dir / 'images' / 'train')
models/__init__.py ADDED
File without changes
models/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (166 Bytes). View file
 
models/__pycache__/common.cpython-310.pyc ADDED
Binary file (32.6 kB). View file
 
models/__pycache__/experimental.cpython-310.pyc ADDED
Binary file (4.77 kB). View file
 
models/__pycache__/yolo.cpython-310.pyc ADDED
Binary file (13.1 kB). View file
 
models/common.py ADDED
@@ -0,0 +1,762 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ """
3
+ Common modules
4
+ """
5
+
6
+ import json
7
+ import math
8
+ import platform
9
+ import warnings
10
+ from collections import OrderedDict, namedtuple
11
+ from copy import copy
12
+ from pathlib import Path
13
+
14
+ import cv2
15
+ import numpy as np
16
+ import pandas as pd
17
+ import requests
18
+ import torch
19
+ import torch.nn as nn
20
+ import yaml
21
+ from PIL import Image
22
+ from torch.cuda import amp
23
+
24
+ from utils.dataloaders import exif_transpose, letterbox
25
+ from utils.general import (LOGGER, check_requirements, check_suffix, check_version, colorstr, increment_path,
26
+ make_divisible, non_max_suppression, scale_coords, xywh2xyxy, xyxy2xywh)
27
+ from utils.plots import Annotator, colors, save_one_box
28
+ from utils.torch_utils import copy_attr, time_sync
29
+
30
+
31
+ def autopad(k, p=None): # kernel, padding
32
+ # Pad to 'same'
33
+ if p is None:
34
+ p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
35
+ return p
36
+
37
+
38
+ class Conv(nn.Module):
39
+ # Standard convolution
40
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
41
+ super().__init__()
42
+ self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
43
+ self.bn = nn.BatchNorm2d(c2)
44
+ self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
45
+
46
+ def forward(self, x):
47
+ return self.act(self.bn(self.conv(x)))
48
+
49
+ def forward_fuse(self, x):
50
+ return self.act(self.conv(x))
51
+
52
+
53
+ class DWConv(Conv):
54
+ # Depth-wise convolution class
55
+ def __init__(self, c1, c2, k=1, s=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
56
+ super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
57
+
58
+
59
+ class DWConvTranspose2d(nn.ConvTranspose2d):
60
+ # Depth-wise transpose convolution class
61
+ def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0): # ch_in, ch_out, kernel, stride, padding, padding_out
62
+ super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2))
63
+
64
+
65
+ class TransformerLayer(nn.Module):
66
+ # Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)
67
+ def __init__(self, c, num_heads):
68
+ super().__init__()
69
+ self.q = nn.Linear(c, c, bias=False)
70
+ self.k = nn.Linear(c, c, bias=False)
71
+ self.v = nn.Linear(c, c, bias=False)
72
+ self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
73
+ self.fc1 = nn.Linear(c, c, bias=False)
74
+ self.fc2 = nn.Linear(c, c, bias=False)
75
+
76
+ def forward(self, x):
77
+ x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
78
+ x = self.fc2(self.fc1(x)) + x
79
+ return x
80
+
81
+
82
+ class TransformerBlock(nn.Module):
83
+ # Vision Transformer https://arxiv.org/abs/2010.11929
84
+ def __init__(self, c1, c2, num_heads, num_layers):
85
+ super().__init__()
86
+ self.conv = None
87
+ if c1 != c2:
88
+ self.conv = Conv(c1, c2)
89
+ self.linear = nn.Linear(c2, c2) # learnable position embedding
90
+ self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers)))
91
+ self.c2 = c2
92
+
93
+ def forward(self, x):
94
+ if self.conv is not None:
95
+ x = self.conv(x)
96
+ b, _, w, h = x.shape
97
+ p = x.flatten(2).permute(2, 0, 1)
98
+ return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h)
99
+
100
+
101
+ class Bottleneck(nn.Module):
102
+ # Standard bottleneck
103
+ def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
104
+ super().__init__()
105
+ c_ = int(c2 * e) # hidden channels
106
+ self.cv1 = Conv(c1, c_, 1, 1)
107
+ self.cv2 = Conv(c_, c2, 3, 1, g=g)
108
+ self.add = shortcut and c1 == c2
109
+
110
+ def forward(self, x):
111
+ return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
112
+
113
+
114
+ class BottleneckCSP(nn.Module):
115
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
116
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
117
+ super().__init__()
118
+ c_ = int(c2 * e) # hidden channels
119
+ self.cv1 = Conv(c1, c_, 1, 1)
120
+ self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
121
+ self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
122
+ self.cv4 = Conv(2 * c_, c2, 1, 1)
123
+ self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
124
+ self.act = nn.SiLU()
125
+ self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
126
+
127
+ def forward(self, x):
128
+ y1 = self.cv3(self.m(self.cv1(x)))
129
+ y2 = self.cv2(x)
130
+ return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))
131
+
132
+
133
+ class CrossConv(nn.Module):
134
+ # Cross Convolution Downsample
135
+ def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
136
+ # ch_in, ch_out, kernel, stride, groups, expansion, shortcut
137
+ super().__init__()
138
+ c_ = int(c2 * e) # hidden channels
139
+ self.cv1 = Conv(c1, c_, (1, k), (1, s))
140
+ self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
141
+ self.add = shortcut and c1 == c2
142
+
143
+ def forward(self, x):
144
+ return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
145
+
146
+
147
+ class C3(nn.Module):
148
+ # CSP Bottleneck with 3 convolutions
149
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
150
+ super().__init__()
151
+ c_ = int(c2 * e) # hidden channels
152
+ self.cv1 = Conv(c1, c_, 1, 1)
153
+ self.cv2 = Conv(c1, c_, 1, 1)
154
+ self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
155
+ self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
156
+
157
+ def forward(self, x):
158
+ return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
159
+
160
+
161
+ class C3x(C3):
162
+ # C3 module with cross-convolutions
163
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
164
+ super().__init__(c1, c2, n, shortcut, g, e)
165
+ c_ = int(c2 * e)
166
+ self.m = nn.Sequential(*(CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)))
167
+
168
+
169
+ class C3TR(C3):
170
+ # C3 module with TransformerBlock()
171
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
172
+ super().__init__(c1, c2, n, shortcut, g, e)
173
+ c_ = int(c2 * e)
174
+ self.m = TransformerBlock(c_, c_, 4, n)
175
+
176
+
177
+ class C3SPP(C3):
178
+ # C3 module with SPP()
179
+ def __init__(self, c1, c2, k=(5, 9, 13), n=1, shortcut=True, g=1, e=0.5):
180
+ super().__init__(c1, c2, n, shortcut, g, e)
181
+ c_ = int(c2 * e)
182
+ self.m = SPP(c_, c_, k)
183
+
184
+
185
+ class C3Ghost(C3):
186
+ # C3 module with GhostBottleneck()
187
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
188
+ super().__init__(c1, c2, n, shortcut, g, e)
189
+ c_ = int(c2 * e) # hidden channels
190
+ self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))
191
+
192
+
193
+ class SPP(nn.Module):
194
+ # Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729
195
+ def __init__(self, c1, c2, k=(5, 9, 13)):
196
+ super().__init__()
197
+ c_ = c1 // 2 # hidden channels
198
+ self.cv1 = Conv(c1, c_, 1, 1)
199
+ self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
200
+ self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
201
+
202
+ def forward(self, x):
203
+ x = self.cv1(x)
204
+ with warnings.catch_warnings():
205
+ warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
206
+ return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
207
+
208
+
209
+ class SPPF(nn.Module):
210
+ # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
211
+ def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13))
212
+ super().__init__()
213
+ c_ = c1 // 2 # hidden channels
214
+ self.cv1 = Conv(c1, c_, 1, 1)
215
+ self.cv2 = Conv(c_ * 4, c2, 1, 1)
216
+ self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
217
+
218
+ def forward(self, x):
219
+ x = self.cv1(x)
220
+ with warnings.catch_warnings():
221
+ warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
222
+ y1 = self.m(x)
223
+ y2 = self.m(y1)
224
+ return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
225
+
226
+
227
+ class Focus(nn.Module):
228
+ # Focus wh information into c-space
229
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
230
+ super().__init__()
231
+ self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
232
+ # self.contract = Contract(gain=2)
233
+
234
+ def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
235
+ return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1))
236
+ # return self.conv(self.contract(x))
237
+
238
+
239
+ class GhostConv(nn.Module):
240
+ # Ghost Convolution https://github.com/huawei-noah/ghostnet
241
+ def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
242
+ super().__init__()
243
+ c_ = c2 // 2 # hidden channels
244
+ self.cv1 = Conv(c1, c_, k, s, None, g, act)
245
+ self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)
246
+
247
+ def forward(self, x):
248
+ y = self.cv1(x)
249
+ return torch.cat((y, self.cv2(y)), 1)
250
+
251
+
252
+ class GhostBottleneck(nn.Module):
253
+ # Ghost Bottleneck https://github.com/huawei-noah/ghostnet
254
+ def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride
255
+ super().__init__()
256
+ c_ = c2 // 2
257
+ self.conv = nn.Sequential(
258
+ GhostConv(c1, c_, 1, 1), # pw
259
+ DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
260
+ GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
261
+ self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1,
262
+ act=False)) if s == 2 else nn.Identity()
263
+
264
+ def forward(self, x):
265
+ return self.conv(x) + self.shortcut(x)
266
+
267
+
268
+ class Contract(nn.Module):
269
+ # Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
270
+ def __init__(self, gain=2):
271
+ super().__init__()
272
+ self.gain = gain
273
+
274
+ def forward(self, x):
275
+ b, c, h, w = x.size() # assert (h / s == 0) and (W / s == 0), 'Indivisible gain'
276
+ s = self.gain
277
+ x = x.view(b, c, h // s, s, w // s, s) # x(1,64,40,2,40,2)
278
+ x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40)
279
+ return x.view(b, c * s * s, h // s, w // s) # x(1,256,40,40)
280
+
281
+
282
+ class Expand(nn.Module):
283
+ # Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
284
+ def __init__(self, gain=2):
285
+ super().__init__()
286
+ self.gain = gain
287
+
288
+ def forward(self, x):
289
+ b, c, h, w = x.size() # assert C / s ** 2 == 0, 'Indivisible gain'
290
+ s = self.gain
291
+ x = x.view(b, s, s, c // s ** 2, h, w) # x(1,2,2,16,80,80)
292
+ x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2)
293
+ return x.view(b, c // s ** 2, h * s, w * s) # x(1,16,160,160)
294
+
295
+
296
+ class Concat(nn.Module):
297
+ # Concatenate a list of tensors along dimension
298
+ def __init__(self, dimension=1):
299
+ super().__init__()
300
+ self.d = dimension
301
+
302
+ def forward(self, x):
303
+ return torch.cat(x, self.d)
304
+
305
+
306
+ class DetectMultiBackend(nn.Module):
307
+ # YOLOv5 MultiBackend class for python inference on various backends
308
+ def __init__(self, weights='yolov5s.pt', device=torch.device('cpu'), dnn=False, data=None, fp16=False, fuse=True):
309
+ # Usage:
310
+ # PyTorch: weights = *.pt
311
+ # TorchScript: *.torchscript
312
+ # ONNX Runtime: *.onnx
313
+ # ONNX OpenCV DNN: *.onnx with --dnn
314
+ # OpenVINO: *.xml
315
+ # CoreML: *.mlmodel
316
+ # TensorRT: *.engine
317
+ # TensorFlow SavedModel: *_saved_model
318
+ # TensorFlow GraphDef: *.pb
319
+ # TensorFlow Lite: *.tflite
320
+ # TensorFlow Edge TPU: *_edgetpu.tflite
321
+ from models.experimental import attempt_download, attempt_load # scoped to avoid circular import
322
+
323
+ super().__init__()
324
+ w = str(weights[0] if isinstance(weights, list) else weights)
325
+ pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs = self.model_type(w) # get backend
326
+ w = attempt_download(w) # download if not local
327
+ fp16 &= (pt or jit or onnx or engine) and device.type != 'cpu' # FP16
328
+ stride, names = 32, [f'class{i}' for i in range(1000)] # assign defaults
329
+ if data: # assign class names (optional)
330
+ with open(data, errors='ignore') as f:
331
+ names = yaml.safe_load(f)['names']
332
+
333
+ if pt: # PyTorch
334
+ model = attempt_load(weights if isinstance(weights, list) else w, device=device, inplace=True, fuse=fuse)
335
+ stride = max(int(model.stride.max()), 32) # model stride
336
+ names = model.module.names if hasattr(model, 'module') else model.names # get class names
337
+ model.half() if fp16 else model.float()
338
+ self.model = model # explicitly assign for to(), cpu(), cuda(), half()
339
+ elif jit: # TorchScript
340
+ LOGGER.info(f'Loading {w} for TorchScript inference...')
341
+ extra_files = {'config.txt': ''} # model metadata
342
+ model = torch.jit.load(w, _extra_files=extra_files)
343
+ model.half() if fp16 else model.float()
344
+ if extra_files['config.txt']:
345
+ d = json.loads(extra_files['config.txt']) # extra_files dict
346
+ stride, names = int(d['stride']), d['names']
347
+ elif dnn: # ONNX OpenCV DNN
348
+ LOGGER.info(f'Loading {w} for ONNX OpenCV DNN inference...')
349
+ check_requirements(('opencv-python>=4.5.4',))
350
+ net = cv2.dnn.readNetFromONNX(w)
351
+ elif onnx: # ONNX Runtime
352
+ LOGGER.info(f'Loading {w} for ONNX Runtime inference...')
353
+ cuda = torch.cuda.is_available()
354
+ check_requirements(('onnx', 'onnxruntime-gpu' if cuda else 'onnxruntime'))
355
+ import onnxruntime
356
+ providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider']
357
+ session = onnxruntime.InferenceSession(w, providers=providers)
358
+ meta = session.get_modelmeta().custom_metadata_map # metadata
359
+ if 'stride' in meta:
360
+ stride, names = int(meta['stride']), eval(meta['names'])
361
+ elif xml: # OpenVINO
362
+ LOGGER.info(f'Loading {w} for OpenVINO inference...')
363
+ check_requirements(('openvino',)) # requires openvino-dev: https://pypi.org/project/openvino-dev/
364
+ from openvino.runtime import Core, Layout, get_batch
365
+ ie = Core()
366
+ if not Path(w).is_file(): # if not *.xml
367
+ w = next(Path(w).glob('*.xml')) # get *.xml file from *_openvino_model dir
368
+ network = ie.read_model(model=w, weights=Path(w).with_suffix('.bin'))
369
+ if network.get_parameters()[0].get_layout().empty:
370
+ network.get_parameters()[0].set_layout(Layout("NCHW"))
371
+ batch_dim = get_batch(network)
372
+ if batch_dim.is_static:
373
+ batch_size = batch_dim.get_length()
374
+ executable_network = ie.compile_model(network, device_name="CPU") # device_name="MYRIAD" for Intel NCS2
375
+ output_layer = next(iter(executable_network.outputs))
376
+ meta = Path(w).with_suffix('.yaml')
377
+ if meta.exists():
378
+ stride, names = self._load_metadata(meta) # load metadata
379
+ elif engine: # TensorRT
380
+ LOGGER.info(f'Loading {w} for TensorRT inference...')
381
+ import tensorrt as trt # https://developer.nvidia.com/nvidia-tensorrt-download
382
+ check_version(trt.__version__, '7.0.0', hard=True) # require tensorrt>=7.0.0
383
+ Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr'))
384
+ logger = trt.Logger(trt.Logger.INFO)
385
+ with open(w, 'rb') as f, trt.Runtime(logger) as runtime:
386
+ model = runtime.deserialize_cuda_engine(f.read())
387
+ context = model.create_execution_context()
388
+ bindings = OrderedDict()
389
+ fp16 = False # default updated below
390
+ dynamic = False
391
+ for index in range(model.num_bindings):
392
+ name = model.get_binding_name(index)
393
+ dtype = trt.nptype(model.get_binding_dtype(index))
394
+ if model.binding_is_input(index):
395
+ if -1 in tuple(model.get_binding_shape(index)): # dynamic
396
+ dynamic = True
397
+ context.set_binding_shape(index, tuple(model.get_profile_shape(0, index)[2]))
398
+ if dtype == np.float16:
399
+ fp16 = True
400
+ shape = tuple(context.get_binding_shape(index))
401
+ data = torch.from_numpy(np.empty(shape, dtype=np.dtype(dtype))).to(device)
402
+ bindings[name] = Binding(name, dtype, shape, data, int(data.data_ptr()))
403
+ binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
404
+ batch_size = bindings['images'].shape[0] # if dynamic, this is instead max batch size
405
+ elif coreml: # CoreML
406
+ LOGGER.info(f'Loading {w} for CoreML inference...')
407
+ import coremltools as ct
408
+ model = ct.models.MLModel(w)
409
+ else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
410
+ if saved_model: # SavedModel
411
+ LOGGER.info(f'Loading {w} for TensorFlow SavedModel inference...')
412
+ import tensorflow as tf
413
+ keras = False # assume TF1 saved_model
414
+ model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w)
415
+ elif pb: # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
416
+ LOGGER.info(f'Loading {w} for TensorFlow GraphDef inference...')
417
+ import tensorflow as tf
418
+
419
+ def wrap_frozen_graph(gd, inputs, outputs):
420
+ x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), []) # wrapped
421
+ ge = x.graph.as_graph_element
422
+ return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs))
423
+
424
+ gd = tf.Graph().as_graph_def() # graph_def
425
+ with open(w, 'rb') as f:
426
+ gd.ParseFromString(f.read())
427
+ frozen_func = wrap_frozen_graph(gd, inputs="x:0", outputs="Identity:0")
428
+ elif tflite or edgetpu: # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python
429
+ try: # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu
430
+ from tflite_runtime.interpreter import Interpreter, load_delegate
431
+ except ImportError:
432
+ import tensorflow as tf
433
+ Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate,
434
+ if edgetpu: # Edge TPU https://coral.ai/software/#edgetpu-runtime
435
+ LOGGER.info(f'Loading {w} for TensorFlow Lite Edge TPU inference...')
436
+ delegate = {
437
+ 'Linux': 'libedgetpu.so.1',
438
+ 'Darwin': 'libedgetpu.1.dylib',
439
+ 'Windows': 'edgetpu.dll'}[platform.system()]
440
+ interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)])
441
+ else: # Lite
442
+ LOGGER.info(f'Loading {w} for TensorFlow Lite inference...')
443
+ interpreter = Interpreter(model_path=w) # load TFLite model
444
+ interpreter.allocate_tensors() # allocate
445
+ input_details = interpreter.get_input_details() # inputs
446
+ output_details = interpreter.get_output_details() # outputs
447
+ elif tfjs:
448
+ raise Exception('ERROR: YOLOv5 TF.js inference is not supported')
449
+ else:
450
+ raise Exception(f'ERROR: {w} is not a supported format')
451
+ self.__dict__.update(locals()) # assign all variables to self
452
+
453
+ def forward(self, im, augment=False, visualize=False, val=False):
454
+ # YOLOv5 MultiBackend inference
455
+ b, ch, h, w = im.shape # batch, channel, height, width
456
+ if self.fp16 and im.dtype != torch.float16:
457
+ im = im.half() # to FP16
458
+
459
+ if self.pt: # PyTorch
460
+ y = self.model(im, augment=augment, visualize=visualize)[0]
461
+ elif self.jit: # TorchScript
462
+ y = self.model(im)[0]
463
+ elif self.dnn: # ONNX OpenCV DNN
464
+ im = im.cpu().numpy() # torch to numpy
465
+ self.net.setInput(im)
466
+ y = self.net.forward()
467
+ elif self.onnx: # ONNX Runtime
468
+ im = im.cpu().numpy() # torch to numpy
469
+ y = self.session.run([self.session.get_outputs()[0].name], {self.session.get_inputs()[0].name: im})[0]
470
+ elif self.xml: # OpenVINO
471
+ im = im.cpu().numpy() # FP32
472
+ y = self.executable_network([im])[self.output_layer]
473
+ elif self.engine: # TensorRT
474
+ if self.dynamic and im.shape != self.bindings['images'].shape:
475
+ i_in, i_out = (self.model.get_binding_index(x) for x in ('images', 'output'))
476
+ self.context.set_binding_shape(i_in, im.shape) # reshape if dynamic
477
+ self.bindings['images'] = self.bindings['images']._replace(shape=im.shape)
478
+ self.bindings['output'].data.resize_(tuple(self.context.get_binding_shape(i_out)))
479
+ s = self.bindings['images'].shape
480
+ assert im.shape == s, f"input size {im.shape} {'>' if self.dynamic else 'not equal to'} max model size {s}"
481
+ self.binding_addrs['images'] = int(im.data_ptr())
482
+ self.context.execute_v2(list(self.binding_addrs.values()))
483
+ y = self.bindings['output'].data
484
+ elif self.coreml: # CoreML
485
+ im = im.permute(0, 2, 3, 1).cpu().numpy() # torch BCHW to numpy BHWC shape(1,320,192,3)
486
+ im = Image.fromarray((im[0] * 255).astype('uint8'))
487
+ # im = im.resize((192, 320), Image.ANTIALIAS)
488
+ y = self.model.predict({'image': im}) # coordinates are xywh normalized
489
+ if 'confidence' in y:
490
+ box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]]) # xyxy pixels
491
+ conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float)
492
+ y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
493
+ else:
494
+ k = 'var_' + str(sorted(int(k.replace('var_', '')) for k in y)[-1]) # output key
495
+ y = y[k] # output
496
+ else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
497
+ im = im.permute(0, 2, 3, 1).cpu().numpy() # torch BCHW to numpy BHWC shape(1,320,192,3)
498
+ if self.saved_model: # SavedModel
499
+ y = (self.model(im, training=False) if self.keras else self.model(im)).numpy()
500
+ elif self.pb: # GraphDef
501
+ y = self.frozen_func(x=self.tf.constant(im)).numpy()
502
+ else: # Lite or Edge TPU
503
+ input, output = self.input_details[0], self.output_details[0]
504
+ int8 = input['dtype'] == np.uint8 # is TFLite quantized uint8 model
505
+ if int8:
506
+ scale, zero_point = input['quantization']
507
+ im = (im / scale + zero_point).astype(np.uint8) # de-scale
508
+ self.interpreter.set_tensor(input['index'], im)
509
+ self.interpreter.invoke()
510
+ y = self.interpreter.get_tensor(output['index'])
511
+ if int8:
512
+ scale, zero_point = output['quantization']
513
+ y = (y.astype(np.float32) - zero_point) * scale # re-scale
514
+ y[..., :4] *= [w, h, w, h] # xywh normalized to pixels
515
+
516
+ if isinstance(y, np.ndarray):
517
+ y = torch.tensor(y, device=self.device)
518
+ return (y, []) if val else y
519
+
520
+ def warmup(self, imgsz=(1, 3, 640, 640)):
521
+ # Warmup model by running inference once
522
+ warmup_types = self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb
523
+ if any(warmup_types) and self.device.type != 'cpu':
524
+ im = torch.zeros(*imgsz, dtype=torch.half if self.fp16 else torch.float, device=self.device) # input
525
+ for _ in range(2 if self.jit else 1): #
526
+ self.forward(im) # warmup
527
+
528
+ @staticmethod
529
+ def model_type(p='path/to/model.pt'):
530
+ # Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx
531
+ from export import export_formats
532
+ suffixes = list(export_formats().Suffix) + ['.xml'] # export suffixes
533
+ check_suffix(p, suffixes) # checks
534
+ p = Path(p).name # eliminate trailing separators
535
+ pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, xml2 = (s in p for s in suffixes)
536
+ xml |= xml2 # *_openvino_model or *.xml
537
+ tflite &= not edgetpu # *.tflite
538
+ return pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs
539
+
540
+ @staticmethod
541
+ def _load_metadata(f='path/to/meta.yaml'):
542
+ # Load metadata from meta.yaml if it exists
543
+ with open(f, errors='ignore') as f:
544
+ d = yaml.safe_load(f)
545
+ return d['stride'], d['names'] # assign stride, names
546
+
547
+
548
+ class AutoShape(nn.Module):
549
+ # YOLOv5 input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
550
+ conf = 0.25 # NMS confidence threshold
551
+ iou = 0.45 # NMS IoU threshold
552
+ agnostic = False # NMS class-agnostic
553
+ multi_label = False # NMS multiple labels per box
554
+ classes = None # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs
555
+ max_det = 1000 # maximum number of detections per image
556
+ amp = False # Automatic Mixed Precision (AMP) inference
557
+
558
+ def __init__(self, model, verbose=True):
559
+ super().__init__()
560
+ if verbose:
561
+ LOGGER.info('Adding AutoShape... ')
562
+ copy_attr(self, model, include=('yaml', 'nc', 'hyp', 'names', 'stride', 'abc'), exclude=()) # copy attributes
563
+ self.dmb = isinstance(model, DetectMultiBackend) # DetectMultiBackend() instance
564
+ self.pt = not self.dmb or model.pt # PyTorch model
565
+ self.model = model.eval()
566
+ if self.pt:
567
+ m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect()
568
+ m.inplace = False # Detect.inplace=False for safe multithread inference
569
+
570
+ def _apply(self, fn):
571
+ # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
572
+ self = super()._apply(fn)
573
+ if self.pt:
574
+ m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect()
575
+ m.stride = fn(m.stride)
576
+ m.grid = list(map(fn, m.grid))
577
+ if isinstance(m.anchor_grid, list):
578
+ m.anchor_grid = list(map(fn, m.anchor_grid))
579
+ return self
580
+
581
+ @torch.no_grad()
582
+ def forward(self, imgs, size=640, augment=False, profile=False):
583
+ # Inference from various sources. For height=640, width=1280, RGB images example inputs are:
584
+ # file: imgs = 'data/images/zidane.jpg' # str or PosixPath
585
+ # URI: = 'https://ultralytics.com/images/zidane.jpg'
586
+ # OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3)
587
+ # PIL: = Image.open('image.jpg') or ImageGrab.grab() # HWC x(640,1280,3)
588
+ # numpy: = np.zeros((640,1280,3)) # HWC
589
+ # torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values)
590
+ # multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
591
+
592
+ t = [time_sync()]
593
+ p = next(self.model.parameters()) if self.pt else torch.zeros(1, device=self.model.device) # for device, type
594
+ autocast = self.amp and (p.device.type != 'cpu') # Automatic Mixed Precision (AMP) inference
595
+ if isinstance(imgs, torch.Tensor): # torch
596
+ with amp.autocast(autocast):
597
+ return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference
598
+
599
+ # Pre-process
600
+ n, imgs = (len(imgs), list(imgs)) if isinstance(imgs, (list, tuple)) else (1, [imgs]) # number, list of images
601
+ shape0, shape1, files = [], [], [] # image and inference shapes, filenames
602
+ for i, im in enumerate(imgs):
603
+ f = f'image{i}' # filename
604
+ if isinstance(im, (str, Path)): # filename or uri
605
+ im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im), im
606
+ im = np.asarray(exif_transpose(im))
607
+ elif isinstance(im, Image.Image): # PIL Image
608
+ im, f = np.asarray(exif_transpose(im)), getattr(im, 'filename', f) or f
609
+ files.append(Path(f).with_suffix('.jpg').name)
610
+ if im.shape[0] < 5: # image in CHW
611
+ im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
612
+ im = im[..., :3] if im.ndim == 3 else np.tile(im[..., None], 3) # enforce 3ch input
613
+ s = im.shape[:2] # HWC
614
+ shape0.append(s) # image shape
615
+ g = (size / max(s)) # gain
616
+ shape1.append([y * g for y in s])
617
+ imgs[i] = im if im.data.contiguous else np.ascontiguousarray(im) # update
618
+ shape1 = [make_divisible(x, self.stride) if self.pt else size for x in np.array(shape1).max(0)] # inf shape
619
+ x = [letterbox(im, shape1, auto=False)[0] for im in imgs] # pad
620
+ x = np.ascontiguousarray(np.array(x).transpose((0, 3, 1, 2))) # stack and BHWC to BCHW
621
+ x = torch.from_numpy(x).to(p.device).type_as(p) / 255 # uint8 to fp16/32
622
+ t.append(time_sync())
623
+
624
+ with amp.autocast(autocast):
625
+ # Inference
626
+ y = self.model(x, augment, profile) # forward
627
+ t.append(time_sync())
628
+
629
+ # Post-process
630
+ y = non_max_suppression(y if self.dmb else y[0],
631
+ self.conf,
632
+ self.iou,
633
+ self.classes,
634
+ self.agnostic,
635
+ self.multi_label,
636
+ max_det=self.max_det) # NMS
637
+ for i in range(n):
638
+ scale_coords(shape1, y[i][:, :4], shape0[i])
639
+
640
+ t.append(time_sync())
641
+ return Detections(imgs, y, files, t, self.names, x.shape)
642
+
643
+
644
+ class Detections:
645
+ # YOLOv5 detections class for inference results
646
+ def __init__(self, imgs, pred, files, times=(0, 0, 0, 0), names=None, shape=None):
647
+ super().__init__()
648
+ d = pred[0].device # device
649
+ gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in imgs] # normalizations
650
+ self.imgs = imgs # list of images as numpy arrays
651
+ self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
652
+ self.names = names # class names
653
+ self.files = files # image filenames
654
+ self.times = times # profiling times
655
+ self.xyxy = pred # xyxy pixels
656
+ self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
657
+ self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
658
+ self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
659
+ self.n = len(self.pred) # number of images (batch size)
660
+ self.t = tuple((times[i + 1] - times[i]) * 1000 / self.n for i in range(3)) # timestamps (ms)
661
+ self.s = shape # inference BCHW shape
662
+
663
+ def display(self, pprint=False, show=False, save=False, crop=False, render=False, labels=True, save_dir=Path('')):
664
+ crops = []
665
+ for i, (im, pred) in enumerate(zip(self.imgs, self.pred)):
666
+ s = f'image {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} ' # string
667
+ if pred.shape[0]:
668
+ for c in pred[:, -1].unique():
669
+ n = (pred[:, -1] == c).sum() # detections per class
670
+ s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
671
+ if show or save or render or crop:
672
+ annotator = Annotator(im, example=str(self.names))
673
+ for *box, conf, cls in reversed(pred): # xyxy, confidence, class
674
+ label = f'{self.names[int(cls)]} {conf:.2f}'
675
+ if crop:
676
+ file = save_dir / 'crops' / self.names[int(cls)] / self.files[i] if save else None
677
+ crops.append({
678
+ 'box': box,
679
+ 'conf': conf,
680
+ 'cls': cls,
681
+ 'label': label,
682
+ 'im': save_one_box(box, im, file=file, save=save)})
683
+ else: # all others
684
+ annotator.box_label(box, label if labels else '', color=colors(cls))
685
+ im = annotator.im
686
+ else:
687
+ s += '(no detections)'
688
+
689
+ im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im # from np
690
+ if pprint:
691
+ print(s.rstrip(', '))
692
+ if show:
693
+ im.show(self.files[i]) # show
694
+ if save:
695
+ f = self.files[i]
696
+ im.save(save_dir / f) # save
697
+ if i == self.n - 1:
698
+ LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}")
699
+ if render:
700
+ self.imgs[i] = np.asarray(im)
701
+ if crop:
702
+ if save:
703
+ LOGGER.info(f'Saved results to {save_dir}\n')
704
+ return crops
705
+
706
+ def print(self):
707
+ self.display(pprint=True) # print results
708
+ print(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' % self.t)
709
+
710
+ def show(self, labels=True):
711
+ self.display(show=True, labels=labels) # show results
712
+
713
+ def save(self, labels=True, save_dir='runs/detect/exp'):
714
+ save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) # increment save_dir
715
+ self.display(save=True, labels=labels, save_dir=save_dir) # save results
716
+
717
+ def crop(self, save=True, save_dir='runs/detect/exp'):
718
+ save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) if save else None
719
+ return self.display(crop=True, save=save, save_dir=save_dir) # crop results
720
+
721
+ def render(self, labels=True):
722
+ self.display(render=True, labels=labels) # render results
723
+ return self.imgs
724
+
725
+ def pandas(self):
726
+ # return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])
727
+ new = copy(self) # return copy
728
+ ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns
729
+ cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns
730
+ for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]):
731
+ a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update
732
+ setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
733
+ return new
734
+
735
+ def tolist(self):
736
+ # return a list of Detections objects, i.e. 'for result in results.tolist():'
737
+ r = range(self.n) # iterable
738
+ x = [Detections([self.imgs[i]], [self.pred[i]], [self.files[i]], self.times, self.names, self.s) for i in r]
739
+ # for d in x:
740
+ # for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
741
+ # setattr(d, k, getattr(d, k)[0]) # pop out of list
742
+ return x
743
+
744
+ def __len__(self):
745
+ return self.n # override len(results)
746
+
747
+ def __str__(self):
748
+ self.print() # override print(results)
749
+ return ''
750
+
751
+
752
+ class Classify(nn.Module):
753
+ # Classification head, i.e. x(b,c1,20,20) to x(b,c2)
754
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
755
+ super().__init__()
756
+ self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1)
757
+ self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g) # to x(b,c2,1,1)
758
+ self.flat = nn.Flatten()
759
+
760
+ def forward(self, x):
761
+ z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list
762
+ return self.flat(self.conv(z)) # flatten to x(b,c2)
models/experimental.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ """
3
+ Experimental modules
4
+ """
5
+ import math
6
+
7
+ import numpy as np
8
+ import torch
9
+ import torch.nn as nn
10
+
11
+ from models.common import Conv
12
+ from utils.downloads import attempt_download
13
+
14
+
15
+ class Sum(nn.Module):
16
+ # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
17
+ def __init__(self, n, weight=False): # n: number of inputs
18
+ super().__init__()
19
+ self.weight = weight # apply weights boolean
20
+ self.iter = range(n - 1) # iter object
21
+ if weight:
22
+ self.w = nn.Parameter(-torch.arange(1.0, n) / 2, requires_grad=True) # layer weights
23
+
24
+ def forward(self, x):
25
+ y = x[0] # no weight
26
+ if self.weight:
27
+ w = torch.sigmoid(self.w) * 2
28
+ for i in self.iter:
29
+ y = y + x[i + 1] * w[i]
30
+ else:
31
+ for i in self.iter:
32
+ y = y + x[i + 1]
33
+ return y
34
+
35
+
36
+ class MixConv2d(nn.Module):
37
+ # Mixed Depth-wise Conv https://arxiv.org/abs/1907.09595
38
+ def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True): # ch_in, ch_out, kernel, stride, ch_strategy
39
+ super().__init__()
40
+ n = len(k) # number of convolutions
41
+ if equal_ch: # equal c_ per group
42
+ i = torch.linspace(0, n - 1E-6, c2).floor() # c2 indices
43
+ c_ = [(i == g).sum() for g in range(n)] # intermediate channels
44
+ else: # equal weight.numel() per group
45
+ b = [c2] + [0] * n
46
+ a = np.eye(n + 1, n, k=-1)
47
+ a -= np.roll(a, 1, axis=1)
48
+ a *= np.array(k) ** 2
49
+ a[0] = 1
50
+ c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
51
+
52
+ self.m = nn.ModuleList([
53
+ nn.Conv2d(c1, int(c_), k, s, k // 2, groups=math.gcd(c1, int(c_)), bias=False) for k, c_ in zip(k, c_)])
54
+ self.bn = nn.BatchNorm2d(c2)
55
+ self.act = nn.SiLU()
56
+
57
+ def forward(self, x):
58
+ return self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
59
+
60
+
61
+ class Ensemble(nn.ModuleList):
62
+ # Ensemble of models
63
+ def __init__(self):
64
+ super().__init__()
65
+
66
+ def forward(self, x, augment=False, profile=False, visualize=False):
67
+ y = [module(x, augment, profile, visualize)[0] for module in self]
68
+ # y = torch.stack(y).max(0)[0] # max ensemble
69
+ # y = torch.stack(y).mean(0) # mean ensemble
70
+ y = torch.cat(y, 1) # nms ensemble
71
+ return y, None # inference, train output
72
+
73
+
74
+ def attempt_load(weights, device=None, inplace=True, fuse=True):
75
+ # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
76
+ from models.yolo import Detect, Model
77
+
78
+ model = Ensemble()
79
+ for w in weights if isinstance(weights, list) else [weights]:
80
+ ckpt = torch.load(attempt_download(w), map_location='cpu') # load
81
+ ckpt = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model
82
+ model.append(ckpt.fuse().eval() if fuse else ckpt.eval()) # fused or un-fused model in eval mode
83
+
84
+ # Compatibility updates
85
+ for m in model.modules():
86
+ t = type(m)
87
+ if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model):
88
+ m.inplace = inplace # torch 1.7.0 compatibility
89
+ if t is Detect and not isinstance(m.anchor_grid, list):
90
+ delattr(m, 'anchor_grid')
91
+ setattr(m, 'anchor_grid', [torch.zeros(1)] * m.nl)
92
+ elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
93
+ m.recompute_scale_factor = None # torch 1.11.0 compatibility
94
+
95
+ if len(model) == 1:
96
+ return model[-1] # return model
97
+ print(f'Ensemble created with {weights}\n')
98
+ for k in 'names', 'nc', 'yaml':
99
+ setattr(model, k, getattr(model[0], k))
100
+ model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride
101
+ assert all(model[0].nc == m.nc for m in model), f'Models have different class counts: {[m.nc for m in model]}'
102
+ return model # return ensemble
models/hub/anchors.yaml ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ # Default anchors for COCO data
3
+
4
+
5
+ # P5 -------------------------------------------------------------------------------------------------------------------
6
+ # P5-640:
7
+ anchors_p5_640:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+
13
+ # P6 -------------------------------------------------------------------------------------------------------------------
14
+ # P6-640: thr=0.25: 0.9964 BPR, 5.54 anchors past thr, n=12, img_size=640, metric_all=0.281/0.716-mean/best, past_thr=0.469-mean: 9,11, 21,19, 17,41, 43,32, 39,70, 86,64, 65,131, 134,130, 120,265, 282,180, 247,354, 512,387
15
+ anchors_p6_640:
16
+ - [9,11, 21,19, 17,41] # P3/8
17
+ - [43,32, 39,70, 86,64] # P4/16
18
+ - [65,131, 134,130, 120,265] # P5/32
19
+ - [282,180, 247,354, 512,387] # P6/64
20
+
21
+ # P6-1280: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1280, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 19,27, 44,40, 38,94, 96,68, 86,152, 180,137, 140,301, 303,264, 238,542, 436,615, 739,380, 925,792
22
+ anchors_p6_1280:
23
+ - [19,27, 44,40, 38,94] # P3/8
24
+ - [96,68, 86,152, 180,137] # P4/16
25
+ - [140,301, 303,264, 238,542] # P5/32
26
+ - [436,615, 739,380, 925,792] # P6/64
27
+
28
+ # P6-1920: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1920, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 28,41, 67,59, 57,141, 144,103, 129,227, 270,205, 209,452, 455,396, 358,812, 653,922, 1109,570, 1387,1187
29
+ anchors_p6_1920:
30
+ - [28,41, 67,59, 57,141] # P3/8
31
+ - [144,103, 129,227, 270,205] # P4/16
32
+ - [209,452, 455,396, 358,812] # P5/32
33
+ - [653,922, 1109,570, 1387,1187] # P6/64
34
+
35
+
36
+ # P7 -------------------------------------------------------------------------------------------------------------------
37
+ # P7-640: thr=0.25: 0.9962 BPR, 6.76 anchors past thr, n=15, img_size=640, metric_all=0.275/0.733-mean/best, past_thr=0.466-mean: 11,11, 13,30, 29,20, 30,46, 61,38, 39,92, 78,80, 146,66, 79,163, 149,150, 321,143, 157,303, 257,402, 359,290, 524,372
38
+ anchors_p7_640:
39
+ - [11,11, 13,30, 29,20] # P3/8
40
+ - [30,46, 61,38, 39,92] # P4/16
41
+ - [78,80, 146,66, 79,163] # P5/32
42
+ - [149,150, 321,143, 157,303] # P6/64
43
+ - [257,402, 359,290, 524,372] # P7/128
44
+
45
+ # P7-1280: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1280, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 19,22, 54,36, 32,77, 70,83, 138,71, 75,173, 165,159, 148,334, 375,151, 334,317, 251,626, 499,474, 750,326, 534,814, 1079,818
46
+ anchors_p7_1280:
47
+ - [19,22, 54,36, 32,77] # P3/8
48
+ - [70,83, 138,71, 75,173] # P4/16
49
+ - [165,159, 148,334, 375,151] # P5/32
50
+ - [334,317, 251,626, 499,474] # P6/64
51
+ - [750,326, 534,814, 1079,818] # P7/128
52
+
53
+ # P7-1920: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1920, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 29,34, 81,55, 47,115, 105,124, 207,107, 113,259, 247,238, 222,500, 563,227, 501,476, 376,939, 749,711, 1126,489, 801,1222, 1618,1227
54
+ anchors_p7_1920:
55
+ - [29,34, 81,55, 47,115] # P3/8
56
+ - [105,124, 207,107, 113,259] # P4/16
57
+ - [247,238, 222,500, 563,227] # P5/32
58
+ - [501,476, 376,939, 749,711] # P6/64
59
+ - [1126,489, 801,1222, 1618,1227] # P7/128
models/hub/yolov3-spp.yaml ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1.0 # model depth multiple
6
+ width_multiple: 1.0 # layer channel multiple
7
+ anchors:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+ # darknet53 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [32, 3, 1]], # 0
16
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
17
+ [-1, 1, Bottleneck, [64]],
18
+ [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
19
+ [-1, 2, Bottleneck, [128]],
20
+ [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
21
+ [-1, 8, Bottleneck, [256]],
22
+ [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
23
+ [-1, 8, Bottleneck, [512]],
24
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
25
+ [-1, 4, Bottleneck, [1024]], # 10
26
+ ]
27
+
28
+ # YOLOv3-SPP head
29
+ head:
30
+ [[-1, 1, Bottleneck, [1024, False]],
31
+ [-1, 1, SPP, [512, [5, 9, 13]]],
32
+ [-1, 1, Conv, [1024, 3, 1]],
33
+ [-1, 1, Conv, [512, 1, 1]],
34
+ [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
35
+
36
+ [-2, 1, Conv, [256, 1, 1]],
37
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
38
+ [[-1, 8], 1, Concat, [1]], # cat backbone P4
39
+ [-1, 1, Bottleneck, [512, False]],
40
+ [-1, 1, Bottleneck, [512, False]],
41
+ [-1, 1, Conv, [256, 1, 1]],
42
+ [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
43
+
44
+ [-2, 1, Conv, [128, 1, 1]],
45
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
46
+ [[-1, 6], 1, Concat, [1]], # cat backbone P3
47
+ [-1, 1, Bottleneck, [256, False]],
48
+ [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
49
+
50
+ [[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
51
+ ]
models/hub/yolov3-tiny.yaml ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1.0 # model depth multiple
6
+ width_multiple: 1.0 # layer channel multiple
7
+ anchors:
8
+ - [10,14, 23,27, 37,58] # P4/16
9
+ - [81,82, 135,169, 344,319] # P5/32
10
+
11
+ # YOLOv3-tiny backbone
12
+ backbone:
13
+ # [from, number, module, args]
14
+ [[-1, 1, Conv, [16, 3, 1]], # 0
15
+ [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 1-P1/2
16
+ [-1, 1, Conv, [32, 3, 1]],
17
+ [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 3-P2/4
18
+ [-1, 1, Conv, [64, 3, 1]],
19
+ [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 5-P3/8
20
+ [-1, 1, Conv, [128, 3, 1]],
21
+ [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 7-P4/16
22
+ [-1, 1, Conv, [256, 3, 1]],
23
+ [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 9-P5/32
24
+ [-1, 1, Conv, [512, 3, 1]],
25
+ [-1, 1, nn.ZeroPad2d, [[0, 1, 0, 1]]], # 11
26
+ [-1, 1, nn.MaxPool2d, [2, 1, 0]], # 12
27
+ ]
28
+
29
+ # YOLOv3-tiny head
30
+ head:
31
+ [[-1, 1, Conv, [1024, 3, 1]],
32
+ [-1, 1, Conv, [256, 1, 1]],
33
+ [-1, 1, Conv, [512, 3, 1]], # 15 (P5/32-large)
34
+
35
+ [-2, 1, Conv, [128, 1, 1]],
36
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
37
+ [[-1, 8], 1, Concat, [1]], # cat backbone P4
38
+ [-1, 1, Conv, [256, 3, 1]], # 19 (P4/16-medium)
39
+
40
+ [[19, 15], 1, Detect, [nc, anchors]], # Detect(P4, P5)
41
+ ]
models/hub/yolov3.yaml ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1.0 # model depth multiple
6
+ width_multiple: 1.0 # layer channel multiple
7
+ anchors:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+ # darknet53 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [32, 3, 1]], # 0
16
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
17
+ [-1, 1, Bottleneck, [64]],
18
+ [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
19
+ [-1, 2, Bottleneck, [128]],
20
+ [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
21
+ [-1, 8, Bottleneck, [256]],
22
+ [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
23
+ [-1, 8, Bottleneck, [512]],
24
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
25
+ [-1, 4, Bottleneck, [1024]], # 10
26
+ ]
27
+
28
+ # YOLOv3 head
29
+ head:
30
+ [[-1, 1, Bottleneck, [1024, False]],
31
+ [-1, 1, Conv, [512, 1, 1]],
32
+ [-1, 1, Conv, [1024, 3, 1]],
33
+ [-1, 1, Conv, [512, 1, 1]],
34
+ [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
35
+
36
+ [-2, 1, Conv, [256, 1, 1]],
37
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
38
+ [[-1, 8], 1, Concat, [1]], # cat backbone P4
39
+ [-1, 1, Bottleneck, [512, False]],
40
+ [-1, 1, Bottleneck, [512, False]],
41
+ [-1, 1, Conv, [256, 1, 1]],
42
+ [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
43
+
44
+ [-2, 1, Conv, [128, 1, 1]],
45
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
46
+ [[-1, 6], 1, Concat, [1]], # cat backbone P3
47
+ [-1, 1, Bottleneck, [256, False]],
48
+ [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
49
+
50
+ [[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
51
+ ]
models/hub/yolov5-bifpn.yaml ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1.0 # model depth multiple
6
+ width_multiple: 1.0 # layer channel multiple
7
+ anchors:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+ # YOLOv5 v6.0 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17
+ [-1, 3, C3, [128]],
18
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19
+ [-1, 6, C3, [256]],
20
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21
+ [-1, 9, C3, [512]],
22
+ [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23
+ [-1, 3, C3, [1024]],
24
+ [-1, 1, SPPF, [1024, 5]], # 9
25
+ ]
26
+
27
+ # YOLOv5 v6.0 BiFPN head
28
+ head:
29
+ [[-1, 1, Conv, [512, 1, 1]],
30
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
32
+ [-1, 3, C3, [512, False]], # 13
33
+
34
+ [-1, 1, Conv, [256, 1, 1]],
35
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
37
+ [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38
+
39
+ [-1, 1, Conv, [256, 3, 2]],
40
+ [[-1, 14, 6], 1, Concat, [1]], # cat P4 <--- BiFPN change
41
+ [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42
+
43
+ [-1, 1, Conv, [512, 3, 2]],
44
+ [[-1, 10], 1, Concat, [1]], # cat head P5
45
+ [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46
+
47
+ [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48
+ ]
models/hub/yolov5-fpn.yaml ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1.0 # model depth multiple
6
+ width_multiple: 1.0 # layer channel multiple
7
+ anchors:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+ # YOLOv5 v6.0 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17
+ [-1, 3, C3, [128]],
18
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19
+ [-1, 6, C3, [256]],
20
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21
+ [-1, 9, C3, [512]],
22
+ [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23
+ [-1, 3, C3, [1024]],
24
+ [-1, 1, SPPF, [1024, 5]], # 9
25
+ ]
26
+
27
+ # YOLOv5 v6.0 FPN head
28
+ head:
29
+ [[-1, 3, C3, [1024, False]], # 10 (P5/32-large)
30
+
31
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
32
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
33
+ [-1, 1, Conv, [512, 1, 1]],
34
+ [-1, 3, C3, [512, False]], # 14 (P4/16-medium)
35
+
36
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
37
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
38
+ [-1, 1, Conv, [256, 1, 1]],
39
+ [-1, 3, C3, [256, False]], # 18 (P3/8-small)
40
+
41
+ [[18, 14, 10], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
42
+ ]
models/hub/yolov5-p2.yaml ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1.0 # model depth multiple
6
+ width_multiple: 1.0 # layer channel multiple
7
+ anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
8
+
9
+ # YOLOv5 v6.0 backbone
10
+ backbone:
11
+ # [from, number, module, args]
12
+ [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
13
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
14
+ [-1, 3, C3, [128]],
15
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
16
+ [-1, 6, C3, [256]],
17
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
18
+ [-1, 9, C3, [512]],
19
+ [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
20
+ [-1, 3, C3, [1024]],
21
+ [-1, 1, SPPF, [1024, 5]], # 9
22
+ ]
23
+
24
+ # YOLOv5 v6.0 head with (P2, P3, P4, P5) outputs
25
+ head:
26
+ [[-1, 1, Conv, [512, 1, 1]],
27
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
28
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
29
+ [-1, 3, C3, [512, False]], # 13
30
+
31
+ [-1, 1, Conv, [256, 1, 1]],
32
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
33
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
34
+ [-1, 3, C3, [256, False]], # 17 (P3/8-small)
35
+
36
+ [-1, 1, Conv, [128, 1, 1]],
37
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
38
+ [[-1, 2], 1, Concat, [1]], # cat backbone P2
39
+ [-1, 1, C3, [128, False]], # 21 (P2/4-xsmall)
40
+
41
+ [-1, 1, Conv, [128, 3, 2]],
42
+ [[-1, 18], 1, Concat, [1]], # cat head P3
43
+ [-1, 3, C3, [256, False]], # 24 (P3/8-small)
44
+
45
+ [-1, 1, Conv, [256, 3, 2]],
46
+ [[-1, 14], 1, Concat, [1]], # cat head P4
47
+ [-1, 3, C3, [512, False]], # 27 (P4/16-medium)
48
+
49
+ [-1, 1, Conv, [512, 3, 2]],
50
+ [[-1, 10], 1, Concat, [1]], # cat head P5
51
+ [-1, 3, C3, [1024, False]], # 30 (P5/32-large)
52
+
53
+ [[21, 24, 27, 30], 1, Detect, [nc, anchors]], # Detect(P2, P3, P4, P5)
54
+ ]
models/hub/yolov5-p34.yaml ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 0.33 # model depth multiple
6
+ width_multiple: 0.50 # layer channel multiple
7
+ anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
8
+
9
+ # YOLOv5 v6.0 backbone
10
+ backbone:
11
+ # [from, number, module, args]
12
+ [ [ -1, 1, Conv, [ 64, 6, 2, 2 ] ], # 0-P1/2
13
+ [ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
14
+ [ -1, 3, C3, [ 128 ] ],
15
+ [ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
16
+ [ -1, 6, C3, [ 256 ] ],
17
+ [ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
18
+ [ -1, 9, C3, [ 512 ] ],
19
+ [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 7-P5/32
20
+ [ -1, 3, C3, [ 1024 ] ],
21
+ [ -1, 1, SPPF, [ 1024, 5 ] ], # 9
22
+ ]
23
+
24
+ # YOLOv5 v6.0 head with (P3, P4) outputs
25
+ head:
26
+ [ [ -1, 1, Conv, [ 512, 1, 1 ] ],
27
+ [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
28
+ [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
29
+ [ -1, 3, C3, [ 512, False ] ], # 13
30
+
31
+ [ -1, 1, Conv, [ 256, 1, 1 ] ],
32
+ [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
33
+ [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
34
+ [ -1, 3, C3, [ 256, False ] ], # 17 (P3/8-small)
35
+
36
+ [ -1, 1, Conv, [ 256, 3, 2 ] ],
37
+ [ [ -1, 14 ], 1, Concat, [ 1 ] ], # cat head P4
38
+ [ -1, 3, C3, [ 512, False ] ], # 20 (P4/16-medium)
39
+
40
+ [ [ 17, 20 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4)
41
+ ]
models/hub/yolov5-p6.yaml ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1.0 # model depth multiple
6
+ width_multiple: 1.0 # layer channel multiple
7
+ anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
8
+
9
+ # YOLOv5 v6.0 backbone
10
+ backbone:
11
+ # [from, number, module, args]
12
+ [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
13
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
14
+ [-1, 3, C3, [128]],
15
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
16
+ [-1, 6, C3, [256]],
17
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
18
+ [-1, 9, C3, [512]],
19
+ [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
20
+ [-1, 3, C3, [768]],
21
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
22
+ [-1, 3, C3, [1024]],
23
+ [-1, 1, SPPF, [1024, 5]], # 11
24
+ ]
25
+
26
+ # YOLOv5 v6.0 head with (P3, P4, P5, P6) outputs
27
+ head:
28
+ [[-1, 1, Conv, [768, 1, 1]],
29
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
30
+ [[-1, 8], 1, Concat, [1]], # cat backbone P5
31
+ [-1, 3, C3, [768, False]], # 15
32
+
33
+ [-1, 1, Conv, [512, 1, 1]],
34
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
35
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
36
+ [-1, 3, C3, [512, False]], # 19
37
+
38
+ [-1, 1, Conv, [256, 1, 1]],
39
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
40
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
41
+ [-1, 3, C3, [256, False]], # 23 (P3/8-small)
42
+
43
+ [-1, 1, Conv, [256, 3, 2]],
44
+ [[-1, 20], 1, Concat, [1]], # cat head P4
45
+ [-1, 3, C3, [512, False]], # 26 (P4/16-medium)
46
+
47
+ [-1, 1, Conv, [512, 3, 2]],
48
+ [[-1, 16], 1, Concat, [1]], # cat head P5
49
+ [-1, 3, C3, [768, False]], # 29 (P5/32-large)
50
+
51
+ [-1, 1, Conv, [768, 3, 2]],
52
+ [[-1, 12], 1, Concat, [1]], # cat head P6
53
+ [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
54
+
55
+ [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
56
+ ]
models/hub/yolov5-p7.yaml ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1.0 # model depth multiple
6
+ width_multiple: 1.0 # layer channel multiple
7
+ anchors: 3 # AutoAnchor evolves 3 anchors per P output layer
8
+
9
+ # YOLOv5 v6.0 backbone
10
+ backbone:
11
+ # [from, number, module, args]
12
+ [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
13
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
14
+ [-1, 3, C3, [128]],
15
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
16
+ [-1, 6, C3, [256]],
17
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
18
+ [-1, 9, C3, [512]],
19
+ [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
20
+ [-1, 3, C3, [768]],
21
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
22
+ [-1, 3, C3, [1024]],
23
+ [-1, 1, Conv, [1280, 3, 2]], # 11-P7/128
24
+ [-1, 3, C3, [1280]],
25
+ [-1, 1, SPPF, [1280, 5]], # 13
26
+ ]
27
+
28
+ # YOLOv5 v6.0 head with (P3, P4, P5, P6, P7) outputs
29
+ head:
30
+ [[-1, 1, Conv, [1024, 1, 1]],
31
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
32
+ [[-1, 10], 1, Concat, [1]], # cat backbone P6
33
+ [-1, 3, C3, [1024, False]], # 17
34
+
35
+ [-1, 1, Conv, [768, 1, 1]],
36
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
37
+ [[-1, 8], 1, Concat, [1]], # cat backbone P5
38
+ [-1, 3, C3, [768, False]], # 21
39
+
40
+ [-1, 1, Conv, [512, 1, 1]],
41
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
42
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
43
+ [-1, 3, C3, [512, False]], # 25
44
+
45
+ [-1, 1, Conv, [256, 1, 1]],
46
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
47
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
48
+ [-1, 3, C3, [256, False]], # 29 (P3/8-small)
49
+
50
+ [-1, 1, Conv, [256, 3, 2]],
51
+ [[-1, 26], 1, Concat, [1]], # cat head P4
52
+ [-1, 3, C3, [512, False]], # 32 (P4/16-medium)
53
+
54
+ [-1, 1, Conv, [512, 3, 2]],
55
+ [[-1, 22], 1, Concat, [1]], # cat head P5
56
+ [-1, 3, C3, [768, False]], # 35 (P5/32-large)
57
+
58
+ [-1, 1, Conv, [768, 3, 2]],
59
+ [[-1, 18], 1, Concat, [1]], # cat head P6
60
+ [-1, 3, C3, [1024, False]], # 38 (P6/64-xlarge)
61
+
62
+ [-1, 1, Conv, [1024, 3, 2]],
63
+ [[-1, 14], 1, Concat, [1]], # cat head P7
64
+ [-1, 3, C3, [1280, False]], # 41 (P7/128-xxlarge)
65
+
66
+ [[29, 32, 35, 38, 41], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6, P7)
67
+ ]
models/hub/yolov5-panet.yaml ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1.0 # model depth multiple
6
+ width_multiple: 1.0 # layer channel multiple
7
+ anchors:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+ # YOLOv5 v6.0 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17
+ [-1, 3, C3, [128]],
18
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19
+ [-1, 6, C3, [256]],
20
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21
+ [-1, 9, C3, [512]],
22
+ [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23
+ [-1, 3, C3, [1024]],
24
+ [-1, 1, SPPF, [1024, 5]], # 9
25
+ ]
26
+
27
+ # YOLOv5 v6.0 PANet head
28
+ head:
29
+ [[-1, 1, Conv, [512, 1, 1]],
30
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
32
+ [-1, 3, C3, [512, False]], # 13
33
+
34
+ [-1, 1, Conv, [256, 1, 1]],
35
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
37
+ [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38
+
39
+ [-1, 1, Conv, [256, 3, 2]],
40
+ [[-1, 14], 1, Concat, [1]], # cat head P4
41
+ [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42
+
43
+ [-1, 1, Conv, [512, 3, 2]],
44
+ [[-1, 10], 1, Concat, [1]], # cat head P5
45
+ [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46
+
47
+ [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48
+ ]
models/hub/yolov5l6.yaml ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1.0 # model depth multiple
6
+ width_multiple: 1.0 # layer channel multiple
7
+ anchors:
8
+ - [19,27, 44,40, 38,94] # P3/8
9
+ - [96,68, 86,152, 180,137] # P4/16
10
+ - [140,301, 303,264, 238,542] # P5/32
11
+ - [436,615, 739,380, 925,792] # P6/64
12
+
13
+ # YOLOv5 v6.0 backbone
14
+ backbone:
15
+ # [from, number, module, args]
16
+ [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
17
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
18
+ [-1, 3, C3, [128]],
19
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
20
+ [-1, 6, C3, [256]],
21
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
22
+ [-1, 9, C3, [512]],
23
+ [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
24
+ [-1, 3, C3, [768]],
25
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
26
+ [-1, 3, C3, [1024]],
27
+ [-1, 1, SPPF, [1024, 5]], # 11
28
+ ]
29
+
30
+ # YOLOv5 v6.0 head
31
+ head:
32
+ [[-1, 1, Conv, [768, 1, 1]],
33
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
34
+ [[-1, 8], 1, Concat, [1]], # cat backbone P5
35
+ [-1, 3, C3, [768, False]], # 15
36
+
37
+ [-1, 1, Conv, [512, 1, 1]],
38
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
39
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
40
+ [-1, 3, C3, [512, False]], # 19
41
+
42
+ [-1, 1, Conv, [256, 1, 1]],
43
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
44
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
45
+ [-1, 3, C3, [256, False]], # 23 (P3/8-small)
46
+
47
+ [-1, 1, Conv, [256, 3, 2]],
48
+ [[-1, 20], 1, Concat, [1]], # cat head P4
49
+ [-1, 3, C3, [512, False]], # 26 (P4/16-medium)
50
+
51
+ [-1, 1, Conv, [512, 3, 2]],
52
+ [[-1, 16], 1, Concat, [1]], # cat head P5
53
+ [-1, 3, C3, [768, False]], # 29 (P5/32-large)
54
+
55
+ [-1, 1, Conv, [768, 3, 2]],
56
+ [[-1, 12], 1, Concat, [1]], # cat head P6
57
+ [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
58
+
59
+ [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
60
+ ]
models/hub/yolov5m6.yaml ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 0.67 # model depth multiple
6
+ width_multiple: 0.75 # layer channel multiple
7
+ anchors:
8
+ - [19,27, 44,40, 38,94] # P3/8
9
+ - [96,68, 86,152, 180,137] # P4/16
10
+ - [140,301, 303,264, 238,542] # P5/32
11
+ - [436,615, 739,380, 925,792] # P6/64
12
+
13
+ # YOLOv5 v6.0 backbone
14
+ backbone:
15
+ # [from, number, module, args]
16
+ [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
17
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
18
+ [-1, 3, C3, [128]],
19
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
20
+ [-1, 6, C3, [256]],
21
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
22
+ [-1, 9, C3, [512]],
23
+ [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
24
+ [-1, 3, C3, [768]],
25
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
26
+ [-1, 3, C3, [1024]],
27
+ [-1, 1, SPPF, [1024, 5]], # 11
28
+ ]
29
+
30
+ # YOLOv5 v6.0 head
31
+ head:
32
+ [[-1, 1, Conv, [768, 1, 1]],
33
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
34
+ [[-1, 8], 1, Concat, [1]], # cat backbone P5
35
+ [-1, 3, C3, [768, False]], # 15
36
+
37
+ [-1, 1, Conv, [512, 1, 1]],
38
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
39
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
40
+ [-1, 3, C3, [512, False]], # 19
41
+
42
+ [-1, 1, Conv, [256, 1, 1]],
43
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
44
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
45
+ [-1, 3, C3, [256, False]], # 23 (P3/8-small)
46
+
47
+ [-1, 1, Conv, [256, 3, 2]],
48
+ [[-1, 20], 1, Concat, [1]], # cat head P4
49
+ [-1, 3, C3, [512, False]], # 26 (P4/16-medium)
50
+
51
+ [-1, 1, Conv, [512, 3, 2]],
52
+ [[-1, 16], 1, Concat, [1]], # cat head P5
53
+ [-1, 3, C3, [768, False]], # 29 (P5/32-large)
54
+
55
+ [-1, 1, Conv, [768, 3, 2]],
56
+ [[-1, 12], 1, Concat, [1]], # cat head P6
57
+ [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
58
+
59
+ [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
60
+ ]
models/hub/yolov5n6.yaml ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 0.33 # model depth multiple
6
+ width_multiple: 0.25 # layer channel multiple
7
+ anchors:
8
+ - [19,27, 44,40, 38,94] # P3/8
9
+ - [96,68, 86,152, 180,137] # P4/16
10
+ - [140,301, 303,264, 238,542] # P5/32
11
+ - [436,615, 739,380, 925,792] # P6/64
12
+
13
+ # YOLOv5 v6.0 backbone
14
+ backbone:
15
+ # [from, number, module, args]
16
+ [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
17
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
18
+ [-1, 3, C3, [128]],
19
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
20
+ [-1, 6, C3, [256]],
21
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
22
+ [-1, 9, C3, [512]],
23
+ [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
24
+ [-1, 3, C3, [768]],
25
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
26
+ [-1, 3, C3, [1024]],
27
+ [-1, 1, SPPF, [1024, 5]], # 11
28
+ ]
29
+
30
+ # YOLOv5 v6.0 head
31
+ head:
32
+ [[-1, 1, Conv, [768, 1, 1]],
33
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
34
+ [[-1, 8], 1, Concat, [1]], # cat backbone P5
35
+ [-1, 3, C3, [768, False]], # 15
36
+
37
+ [-1, 1, Conv, [512, 1, 1]],
38
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
39
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
40
+ [-1, 3, C3, [512, False]], # 19
41
+
42
+ [-1, 1, Conv, [256, 1, 1]],
43
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
44
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
45
+ [-1, 3, C3, [256, False]], # 23 (P3/8-small)
46
+
47
+ [-1, 1, Conv, [256, 3, 2]],
48
+ [[-1, 20], 1, Concat, [1]], # cat head P4
49
+ [-1, 3, C3, [512, False]], # 26 (P4/16-medium)
50
+
51
+ [-1, 1, Conv, [512, 3, 2]],
52
+ [[-1, 16], 1, Concat, [1]], # cat head P5
53
+ [-1, 3, C3, [768, False]], # 29 (P5/32-large)
54
+
55
+ [-1, 1, Conv, [768, 3, 2]],
56
+ [[-1, 12], 1, Concat, [1]], # cat head P6
57
+ [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
58
+
59
+ [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
60
+ ]
models/hub/yolov5s-ghost.yaml ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 0.33 # model depth multiple
6
+ width_multiple: 0.50 # layer channel multiple
7
+ anchors:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+ # YOLOv5 v6.0 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16
+ [-1, 1, GhostConv, [128, 3, 2]], # 1-P2/4
17
+ [-1, 3, C3Ghost, [128]],
18
+ [-1, 1, GhostConv, [256, 3, 2]], # 3-P3/8
19
+ [-1, 6, C3Ghost, [256]],
20
+ [-1, 1, GhostConv, [512, 3, 2]], # 5-P4/16
21
+ [-1, 9, C3Ghost, [512]],
22
+ [-1, 1, GhostConv, [1024, 3, 2]], # 7-P5/32
23
+ [-1, 3, C3Ghost, [1024]],
24
+ [-1, 1, SPPF, [1024, 5]], # 9
25
+ ]
26
+
27
+ # YOLOv5 v6.0 head
28
+ head:
29
+ [[-1, 1, GhostConv, [512, 1, 1]],
30
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
32
+ [-1, 3, C3Ghost, [512, False]], # 13
33
+
34
+ [-1, 1, GhostConv, [256, 1, 1]],
35
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
37
+ [-1, 3, C3Ghost, [256, False]], # 17 (P3/8-small)
38
+
39
+ [-1, 1, GhostConv, [256, 3, 2]],
40
+ [[-1, 14], 1, Concat, [1]], # cat head P4
41
+ [-1, 3, C3Ghost, [512, False]], # 20 (P4/16-medium)
42
+
43
+ [-1, 1, GhostConv, [512, 3, 2]],
44
+ [[-1, 10], 1, Concat, [1]], # cat head P5
45
+ [-1, 3, C3Ghost, [1024, False]], # 23 (P5/32-large)
46
+
47
+ [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48
+ ]
models/hub/yolov5s-transformer.yaml ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 0.33 # model depth multiple
6
+ width_multiple: 0.50 # layer channel multiple
7
+ anchors:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+ # YOLOv5 v6.0 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17
+ [-1, 3, C3, [128]],
18
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19
+ [-1, 6, C3, [256]],
20
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21
+ [-1, 9, C3, [512]],
22
+ [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23
+ [-1, 3, C3TR, [1024]], # 9 <--- C3TR() Transformer module
24
+ [-1, 1, SPPF, [1024, 5]], # 9
25
+ ]
26
+
27
+ # YOLOv5 v6.0 head
28
+ head:
29
+ [[-1, 1, Conv, [512, 1, 1]],
30
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
32
+ [-1, 3, C3, [512, False]], # 13
33
+
34
+ [-1, 1, Conv, [256, 1, 1]],
35
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
37
+ [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38
+
39
+ [-1, 1, Conv, [256, 3, 2]],
40
+ [[-1, 14], 1, Concat, [1]], # cat head P4
41
+ [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42
+
43
+ [-1, 1, Conv, [512, 3, 2]],
44
+ [[-1, 10], 1, Concat, [1]], # cat head P5
45
+ [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46
+
47
+ [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48
+ ]
models/hub/yolov5s6.yaml ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 0.33 # model depth multiple
6
+ width_multiple: 0.50 # layer channel multiple
7
+ anchors:
8
+ - [19,27, 44,40, 38,94] # P3/8
9
+ - [96,68, 86,152, 180,137] # P4/16
10
+ - [140,301, 303,264, 238,542] # P5/32
11
+ - [436,615, 739,380, 925,792] # P6/64
12
+
13
+ # YOLOv5 v6.0 backbone
14
+ backbone:
15
+ # [from, number, module, args]
16
+ [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
17
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
18
+ [-1, 3, C3, [128]],
19
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
20
+ [-1, 6, C3, [256]],
21
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
22
+ [-1, 9, C3, [512]],
23
+ [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
24
+ [-1, 3, C3, [768]],
25
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
26
+ [-1, 3, C3, [1024]],
27
+ [-1, 1, SPPF, [1024, 5]], # 11
28
+ ]
29
+
30
+ # YOLOv5 v6.0 head
31
+ head:
32
+ [[-1, 1, Conv, [768, 1, 1]],
33
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
34
+ [[-1, 8], 1, Concat, [1]], # cat backbone P5
35
+ [-1, 3, C3, [768, False]], # 15
36
+
37
+ [-1, 1, Conv, [512, 1, 1]],
38
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
39
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
40
+ [-1, 3, C3, [512, False]], # 19
41
+
42
+ [-1, 1, Conv, [256, 1, 1]],
43
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
44
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
45
+ [-1, 3, C3, [256, False]], # 23 (P3/8-small)
46
+
47
+ [-1, 1, Conv, [256, 3, 2]],
48
+ [[-1, 20], 1, Concat, [1]], # cat head P4
49
+ [-1, 3, C3, [512, False]], # 26 (P4/16-medium)
50
+
51
+ [-1, 1, Conv, [512, 3, 2]],
52
+ [[-1, 16], 1, Concat, [1]], # cat head P5
53
+ [-1, 3, C3, [768, False]], # 29 (P5/32-large)
54
+
55
+ [-1, 1, Conv, [768, 3, 2]],
56
+ [[-1, 12], 1, Concat, [1]], # cat head P6
57
+ [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
58
+
59
+ [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
60
+ ]
models/hub/yolov5x6.yaml ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1.33 # model depth multiple
6
+ width_multiple: 1.25 # layer channel multiple
7
+ anchors:
8
+ - [19,27, 44,40, 38,94] # P3/8
9
+ - [96,68, 86,152, 180,137] # P4/16
10
+ - [140,301, 303,264, 238,542] # P5/32
11
+ - [436,615, 739,380, 925,792] # P6/64
12
+
13
+ # YOLOv5 v6.0 backbone
14
+ backbone:
15
+ # [from, number, module, args]
16
+ [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
17
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
18
+ [-1, 3, C3, [128]],
19
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
20
+ [-1, 6, C3, [256]],
21
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
22
+ [-1, 9, C3, [512]],
23
+ [-1, 1, Conv, [768, 3, 2]], # 7-P5/32
24
+ [-1, 3, C3, [768]],
25
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64
26
+ [-1, 3, C3, [1024]],
27
+ [-1, 1, SPPF, [1024, 5]], # 11
28
+ ]
29
+
30
+ # YOLOv5 v6.0 head
31
+ head:
32
+ [[-1, 1, Conv, [768, 1, 1]],
33
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
34
+ [[-1, 8], 1, Concat, [1]], # cat backbone P5
35
+ [-1, 3, C3, [768, False]], # 15
36
+
37
+ [-1, 1, Conv, [512, 1, 1]],
38
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
39
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
40
+ [-1, 3, C3, [512, False]], # 19
41
+
42
+ [-1, 1, Conv, [256, 1, 1]],
43
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
44
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
45
+ [-1, 3, C3, [256, False]], # 23 (P3/8-small)
46
+
47
+ [-1, 1, Conv, [256, 3, 2]],
48
+ [[-1, 20], 1, Concat, [1]], # cat head P4
49
+ [-1, 3, C3, [512, False]], # 26 (P4/16-medium)
50
+
51
+ [-1, 1, Conv, [512, 3, 2]],
52
+ [[-1, 16], 1, Concat, [1]], # cat head P5
53
+ [-1, 3, C3, [768, False]], # 29 (P5/32-large)
54
+
55
+ [-1, 1, Conv, [768, 3, 2]],
56
+ [[-1, 12], 1, Concat, [1]], # cat head P6
57
+ [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge)
58
+
59
+ [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
60
+ ]
models/tf.py ADDED
@@ -0,0 +1,574 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ """
3
+ TensorFlow, Keras and TFLite versions of YOLOv5
4
+ Authored by https://github.com/zldrobit in PR https://github.com/ultralytics/yolov5/pull/1127
5
+
6
+ Usage:
7
+ $ python models/tf.py --weights yolov5s.pt
8
+
9
+ Export:
10
+ $ python path/to/export.py --weights yolov5s.pt --include saved_model pb tflite tfjs
11
+ """
12
+
13
+ import argparse
14
+ import sys
15
+ from copy import deepcopy
16
+ from pathlib import Path
17
+
18
+ FILE = Path(__file__).resolve()
19
+ ROOT = FILE.parents[1] # YOLOv5 root directory
20
+ if str(ROOT) not in sys.path:
21
+ sys.path.append(str(ROOT)) # add ROOT to PATH
22
+ # ROOT = ROOT.relative_to(Path.cwd()) # relative
23
+
24
+ import numpy as np
25
+ import tensorflow as tf
26
+ import torch
27
+ import torch.nn as nn
28
+ from tensorflow import keras
29
+
30
+ from models.common import (C3, SPP, SPPF, Bottleneck, BottleneckCSP, C3x, Concat, Conv, CrossConv, DWConv,
31
+ DWConvTranspose2d, Focus, autopad)
32
+ from models.experimental import MixConv2d, attempt_load
33
+ from models.yolo import Detect
34
+ from utils.activations import SiLU
35
+ from utils.general import LOGGER, make_divisible, print_args
36
+
37
+
38
+ class TFBN(keras.layers.Layer):
39
+ # TensorFlow BatchNormalization wrapper
40
+ def __init__(self, w=None):
41
+ super().__init__()
42
+ self.bn = keras.layers.BatchNormalization(
43
+ beta_initializer=keras.initializers.Constant(w.bias.numpy()),
44
+ gamma_initializer=keras.initializers.Constant(w.weight.numpy()),
45
+ moving_mean_initializer=keras.initializers.Constant(w.running_mean.numpy()),
46
+ moving_variance_initializer=keras.initializers.Constant(w.running_var.numpy()),
47
+ epsilon=w.eps)
48
+
49
+ def call(self, inputs):
50
+ return self.bn(inputs)
51
+
52
+
53
+ class TFPad(keras.layers.Layer):
54
+ # Pad inputs in spatial dimensions 1 and 2
55
+ def __init__(self, pad):
56
+ super().__init__()
57
+ if isinstance(pad, int):
58
+ self.pad = tf.constant([[0, 0], [pad, pad], [pad, pad], [0, 0]])
59
+ else: # tuple/list
60
+ self.pad = tf.constant([[0, 0], [pad[0], pad[0]], [pad[1], pad[1]], [0, 0]])
61
+
62
+ def call(self, inputs):
63
+ return tf.pad(inputs, self.pad, mode='constant', constant_values=0)
64
+
65
+
66
+ class TFConv(keras.layers.Layer):
67
+ # Standard convolution
68
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
69
+ # ch_in, ch_out, weights, kernel, stride, padding, groups
70
+ super().__init__()
71
+ assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
72
+ # TensorFlow convolution padding is inconsistent with PyTorch (e.g. k=3 s=2 'SAME' padding)
73
+ # see https://stackoverflow.com/questions/52975843/comparing-conv2d-with-padding-between-tensorflow-and-pytorch
74
+ conv = keras.layers.Conv2D(
75
+ filters=c2,
76
+ kernel_size=k,
77
+ strides=s,
78
+ padding='SAME' if s == 1 else 'VALID',
79
+ use_bias=not hasattr(w, 'bn'),
80
+ kernel_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()),
81
+ bias_initializer='zeros' if hasattr(w, 'bn') else keras.initializers.Constant(w.conv.bias.numpy()))
82
+ self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv])
83
+ self.bn = TFBN(w.bn) if hasattr(w, 'bn') else tf.identity
84
+ self.act = activations(w.act) if act else tf.identity
85
+
86
+ def call(self, inputs):
87
+ return self.act(self.bn(self.conv(inputs)))
88
+
89
+
90
+ class TFDWConv(keras.layers.Layer):
91
+ # Depthwise convolution
92
+ def __init__(self, c1, c2, k=1, s=1, p=None, act=True, w=None):
93
+ # ch_in, ch_out, weights, kernel, stride, padding, groups
94
+ super().__init__()
95
+ assert c2 % c1 == 0, f'TFDWConv() output={c2} must be a multiple of input={c1} channels'
96
+ conv = keras.layers.DepthwiseConv2D(
97
+ kernel_size=k,
98
+ depth_multiplier=c2 // c1,
99
+ strides=s,
100
+ padding='SAME' if s == 1 else 'VALID',
101
+ use_bias=not hasattr(w, 'bn'),
102
+ depthwise_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()),
103
+ bias_initializer='zeros' if hasattr(w, 'bn') else keras.initializers.Constant(w.conv.bias.numpy()))
104
+ self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv])
105
+ self.bn = TFBN(w.bn) if hasattr(w, 'bn') else tf.identity
106
+ self.act = activations(w.act) if act else tf.identity
107
+
108
+ def call(self, inputs):
109
+ return self.act(self.bn(self.conv(inputs)))
110
+
111
+
112
+ class TFDWConvTranspose2d(keras.layers.Layer):
113
+ # Depthwise ConvTranspose2d
114
+ def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0, w=None):
115
+ # ch_in, ch_out, weights, kernel, stride, padding, groups
116
+ super().__init__()
117
+ assert c1 == c2, f'TFDWConv() output={c2} must be equal to input={c1} channels'
118
+ assert k == 4 and p1 == 1, 'TFDWConv() only valid for k=4 and p1=1'
119
+ weight, bias = w.weight.permute(2, 3, 1, 0).numpy(), w.bias.numpy()
120
+ self.c1 = c1
121
+ self.conv = [
122
+ keras.layers.Conv2DTranspose(filters=1,
123
+ kernel_size=k,
124
+ strides=s,
125
+ padding='VALID',
126
+ output_padding=p2,
127
+ use_bias=True,
128
+ kernel_initializer=keras.initializers.Constant(weight[..., i:i + 1]),
129
+ bias_initializer=keras.initializers.Constant(bias[i])) for i in range(c1)]
130
+
131
+ def call(self, inputs):
132
+ return tf.concat([m(x) for m, x in zip(self.conv, tf.split(inputs, self.c1, 3))], 3)[:, 1:-1, 1:-1]
133
+
134
+
135
+ class TFFocus(keras.layers.Layer):
136
+ # Focus wh information into c-space
137
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
138
+ # ch_in, ch_out, kernel, stride, padding, groups
139
+ super().__init__()
140
+ self.conv = TFConv(c1 * 4, c2, k, s, p, g, act, w.conv)
141
+
142
+ def call(self, inputs): # x(b,w,h,c) -> y(b,w/2,h/2,4c)
143
+ # inputs = inputs / 255 # normalize 0-255 to 0-1
144
+ inputs = [inputs[:, ::2, ::2, :], inputs[:, 1::2, ::2, :], inputs[:, ::2, 1::2, :], inputs[:, 1::2, 1::2, :]]
145
+ return self.conv(tf.concat(inputs, 3))
146
+
147
+
148
+ class TFBottleneck(keras.layers.Layer):
149
+ # Standard bottleneck
150
+ def __init__(self, c1, c2, shortcut=True, g=1, e=0.5, w=None): # ch_in, ch_out, shortcut, groups, expansion
151
+ super().__init__()
152
+ c_ = int(c2 * e) # hidden channels
153
+ self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
154
+ self.cv2 = TFConv(c_, c2, 3, 1, g=g, w=w.cv2)
155
+ self.add = shortcut and c1 == c2
156
+
157
+ def call(self, inputs):
158
+ return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs))
159
+
160
+
161
+ class TFCrossConv(keras.layers.Layer):
162
+ # Cross Convolution
163
+ def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False, w=None):
164
+ super().__init__()
165
+ c_ = int(c2 * e) # hidden channels
166
+ self.cv1 = TFConv(c1, c_, (1, k), (1, s), w=w.cv1)
167
+ self.cv2 = TFConv(c_, c2, (k, 1), (s, 1), g=g, w=w.cv2)
168
+ self.add = shortcut and c1 == c2
169
+
170
+ def call(self, inputs):
171
+ return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs))
172
+
173
+
174
+ class TFConv2d(keras.layers.Layer):
175
+ # Substitution for PyTorch nn.Conv2D
176
+ def __init__(self, c1, c2, k, s=1, g=1, bias=True, w=None):
177
+ super().__init__()
178
+ assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
179
+ self.conv = keras.layers.Conv2D(filters=c2,
180
+ kernel_size=k,
181
+ strides=s,
182
+ padding='VALID',
183
+ use_bias=bias,
184
+ kernel_initializer=keras.initializers.Constant(
185
+ w.weight.permute(2, 3, 1, 0).numpy()),
186
+ bias_initializer=keras.initializers.Constant(w.bias.numpy()) if bias else None)
187
+
188
+ def call(self, inputs):
189
+ return self.conv(inputs)
190
+
191
+
192
+ class TFBottleneckCSP(keras.layers.Layer):
193
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
194
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
195
+ # ch_in, ch_out, number, shortcut, groups, expansion
196
+ super().__init__()
197
+ c_ = int(c2 * e) # hidden channels
198
+ self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
199
+ self.cv2 = TFConv2d(c1, c_, 1, 1, bias=False, w=w.cv2)
200
+ self.cv3 = TFConv2d(c_, c_, 1, 1, bias=False, w=w.cv3)
201
+ self.cv4 = TFConv(2 * c_, c2, 1, 1, w=w.cv4)
202
+ self.bn = TFBN(w.bn)
203
+ self.act = lambda x: keras.activations.swish(x)
204
+ self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
205
+
206
+ def call(self, inputs):
207
+ y1 = self.cv3(self.m(self.cv1(inputs)))
208
+ y2 = self.cv2(inputs)
209
+ return self.cv4(self.act(self.bn(tf.concat((y1, y2), axis=3))))
210
+
211
+
212
+ class TFC3(keras.layers.Layer):
213
+ # CSP Bottleneck with 3 convolutions
214
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
215
+ # ch_in, ch_out, number, shortcut, groups, expansion
216
+ super().__init__()
217
+ c_ = int(c2 * e) # hidden channels
218
+ self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
219
+ self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2)
220
+ self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3)
221
+ self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
222
+
223
+ def call(self, inputs):
224
+ return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3))
225
+
226
+
227
+ class TFC3x(keras.layers.Layer):
228
+ # 3 module with cross-convolutions
229
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
230
+ # ch_in, ch_out, number, shortcut, groups, expansion
231
+ super().__init__()
232
+ c_ = int(c2 * e) # hidden channels
233
+ self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
234
+ self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2)
235
+ self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3)
236
+ self.m = keras.Sequential([
237
+ TFCrossConv(c_, c_, k=3, s=1, g=g, e=1.0, shortcut=shortcut, w=w.m[j]) for j in range(n)])
238
+
239
+ def call(self, inputs):
240
+ return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3))
241
+
242
+
243
+ class TFSPP(keras.layers.Layer):
244
+ # Spatial pyramid pooling layer used in YOLOv3-SPP
245
+ def __init__(self, c1, c2, k=(5, 9, 13), w=None):
246
+ super().__init__()
247
+ c_ = c1 // 2 # hidden channels
248
+ self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
249
+ self.cv2 = TFConv(c_ * (len(k) + 1), c2, 1, 1, w=w.cv2)
250
+ self.m = [keras.layers.MaxPool2D(pool_size=x, strides=1, padding='SAME') for x in k]
251
+
252
+ def call(self, inputs):
253
+ x = self.cv1(inputs)
254
+ return self.cv2(tf.concat([x] + [m(x) for m in self.m], 3))
255
+
256
+
257
+ class TFSPPF(keras.layers.Layer):
258
+ # Spatial pyramid pooling-Fast layer
259
+ def __init__(self, c1, c2, k=5, w=None):
260
+ super().__init__()
261
+ c_ = c1 // 2 # hidden channels
262
+ self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
263
+ self.cv2 = TFConv(c_ * 4, c2, 1, 1, w=w.cv2)
264
+ self.m = keras.layers.MaxPool2D(pool_size=k, strides=1, padding='SAME')
265
+
266
+ def call(self, inputs):
267
+ x = self.cv1(inputs)
268
+ y1 = self.m(x)
269
+ y2 = self.m(y1)
270
+ return self.cv2(tf.concat([x, y1, y2, self.m(y2)], 3))
271
+
272
+
273
+ class TFDetect(keras.layers.Layer):
274
+ # TF YOLOv5 Detect layer
275
+ def __init__(self, nc=80, anchors=(), ch=(), imgsz=(640, 640), w=None): # detection layer
276
+ super().__init__()
277
+ self.stride = tf.convert_to_tensor(w.stride.numpy(), dtype=tf.float32)
278
+ self.nc = nc # number of classes
279
+ self.no = nc + 5 # number of outputs per anchor
280
+ self.nl = len(anchors) # number of detection layers
281
+ self.na = len(anchors[0]) // 2 # number of anchors
282
+ self.grid = [tf.zeros(1)] * self.nl # init grid
283
+ self.anchors = tf.convert_to_tensor(w.anchors.numpy(), dtype=tf.float32)
284
+ self.anchor_grid = tf.reshape(self.anchors * tf.reshape(self.stride, [self.nl, 1, 1]), [self.nl, 1, -1, 1, 2])
285
+ self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)]
286
+ self.training = False # set to False after building model
287
+ self.imgsz = imgsz
288
+ for i in range(self.nl):
289
+ ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
290
+ self.grid[i] = self._make_grid(nx, ny)
291
+
292
+ def call(self, inputs):
293
+ z = [] # inference output
294
+ x = []
295
+ for i in range(self.nl):
296
+ x.append(self.m[i](inputs[i]))
297
+ # x(bs,20,20,255) to x(bs,3,20,20,85)
298
+ ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
299
+ x[i] = tf.reshape(x[i], [-1, ny * nx, self.na, self.no])
300
+
301
+ if not self.training: # inference
302
+ y = tf.sigmoid(x[i])
303
+ grid = tf.transpose(self.grid[i], [0, 2, 1, 3]) - 0.5
304
+ anchor_grid = tf.transpose(self.anchor_grid[i], [0, 2, 1, 3]) * 4
305
+ xy = (y[..., 0:2] * 2 + grid) * self.stride[i] # xy
306
+ wh = y[..., 2:4] ** 2 * anchor_grid
307
+ # Normalize xywh to 0-1 to reduce calibration error
308
+ xy /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
309
+ wh /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
310
+ y = tf.concat([xy, wh, y[..., 4:]], -1)
311
+ z.append(tf.reshape(y, [-1, self.na * ny * nx, self.no]))
312
+
313
+ return tf.transpose(x, [0, 2, 1, 3]) if self.training else (tf.concat(z, 1), x)
314
+
315
+ @staticmethod
316
+ def _make_grid(nx=20, ny=20):
317
+ # yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
318
+ # return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
319
+ xv, yv = tf.meshgrid(tf.range(nx), tf.range(ny))
320
+ return tf.cast(tf.reshape(tf.stack([xv, yv], 2), [1, 1, ny * nx, 2]), dtype=tf.float32)
321
+
322
+
323
+ class TFUpsample(keras.layers.Layer):
324
+ # TF version of torch.nn.Upsample()
325
+ def __init__(self, size, scale_factor, mode, w=None): # warning: all arguments needed including 'w'
326
+ super().__init__()
327
+ assert scale_factor == 2, "scale_factor must be 2"
328
+ self.upsample = lambda x: tf.image.resize(x, (x.shape[1] * 2, x.shape[2] * 2), method=mode)
329
+ # self.upsample = keras.layers.UpSampling2D(size=scale_factor, interpolation=mode)
330
+ # with default arguments: align_corners=False, half_pixel_centers=False
331
+ # self.upsample = lambda x: tf.raw_ops.ResizeNearestNeighbor(images=x,
332
+ # size=(x.shape[1] * 2, x.shape[2] * 2))
333
+
334
+ def call(self, inputs):
335
+ return self.upsample(inputs)
336
+
337
+
338
+ class TFConcat(keras.layers.Layer):
339
+ # TF version of torch.concat()
340
+ def __init__(self, dimension=1, w=None):
341
+ super().__init__()
342
+ assert dimension == 1, "convert only NCHW to NHWC concat"
343
+ self.d = 3
344
+
345
+ def call(self, inputs):
346
+ return tf.concat(inputs, self.d)
347
+
348
+
349
+ def parse_model(d, ch, model, imgsz): # model_dict, input_channels(3)
350
+ LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}")
351
+ anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
352
+ na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
353
+ no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
354
+
355
+ layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
356
+ for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
357
+ m_str = m
358
+ m = eval(m) if isinstance(m, str) else m # eval strings
359
+ for j, a in enumerate(args):
360
+ try:
361
+ args[j] = eval(a) if isinstance(a, str) else a # eval strings
362
+ except NameError:
363
+ pass
364
+
365
+ n = max(round(n * gd), 1) if n > 1 else n # depth gain
366
+ if m in [
367
+ nn.Conv2d, Conv, DWConv, DWConvTranspose2d, Bottleneck, SPP, SPPF, MixConv2d, Focus, CrossConv,
368
+ BottleneckCSP, C3, C3x]:
369
+ c1, c2 = ch[f], args[0]
370
+ c2 = make_divisible(c2 * gw, 8) if c2 != no else c2
371
+
372
+ args = [c1, c2, *args[1:]]
373
+ if m in [BottleneckCSP, C3, C3x]:
374
+ args.insert(2, n)
375
+ n = 1
376
+ elif m is nn.BatchNorm2d:
377
+ args = [ch[f]]
378
+ elif m is Concat:
379
+ c2 = sum(ch[-1 if x == -1 else x + 1] for x in f)
380
+ elif m is Detect:
381
+ args.append([ch[x + 1] for x in f])
382
+ if isinstance(args[1], int): # number of anchors
383
+ args[1] = [list(range(args[1] * 2))] * len(f)
384
+ args.append(imgsz)
385
+ else:
386
+ c2 = ch[f]
387
+
388
+ tf_m = eval('TF' + m_str.replace('nn.', ''))
389
+ m_ = keras.Sequential([tf_m(*args, w=model.model[i][j]) for j in range(n)]) if n > 1 \
390
+ else tf_m(*args, w=model.model[i]) # module
391
+
392
+ torch_m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
393
+ t = str(m)[8:-2].replace('__main__.', '') # module type
394
+ np = sum(x.numel() for x in torch_m_.parameters()) # number params
395
+ m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
396
+ LOGGER.info(f'{i:>3}{str(f):>18}{str(n):>3}{np:>10} {t:<40}{str(args):<30}') # print
397
+ save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
398
+ layers.append(m_)
399
+ ch.append(c2)
400
+ return keras.Sequential(layers), sorted(save)
401
+
402
+
403
+ class TFModel:
404
+ # TF YOLOv5 model
405
+ def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, model=None, imgsz=(640, 640)): # model, channels, classes
406
+ super().__init__()
407
+ if isinstance(cfg, dict):
408
+ self.yaml = cfg # model dict
409
+ else: # is *.yaml
410
+ import yaml # for torch hub
411
+ self.yaml_file = Path(cfg).name
412
+ with open(cfg) as f:
413
+ self.yaml = yaml.load(f, Loader=yaml.FullLoader) # model dict
414
+
415
+ # Define model
416
+ if nc and nc != self.yaml['nc']:
417
+ LOGGER.info(f"Overriding {cfg} nc={self.yaml['nc']} with nc={nc}")
418
+ self.yaml['nc'] = nc # override yaml value
419
+ self.model, self.savelist = parse_model(deepcopy(self.yaml), ch=[ch], model=model, imgsz=imgsz)
420
+
421
+ def predict(self,
422
+ inputs,
423
+ tf_nms=False,
424
+ agnostic_nms=False,
425
+ topk_per_class=100,
426
+ topk_all=100,
427
+ iou_thres=0.45,
428
+ conf_thres=0.25):
429
+ y = [] # outputs
430
+ x = inputs
431
+ for m in self.model.layers:
432
+ if m.f != -1: # if not from previous layer
433
+ x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
434
+
435
+ x = m(x) # run
436
+ y.append(x if m.i in self.savelist else None) # save output
437
+
438
+ # Add TensorFlow NMS
439
+ if tf_nms:
440
+ boxes = self._xywh2xyxy(x[0][..., :4])
441
+ probs = x[0][:, :, 4:5]
442
+ classes = x[0][:, :, 5:]
443
+ scores = probs * classes
444
+ if agnostic_nms:
445
+ nms = AgnosticNMS()((boxes, classes, scores), topk_all, iou_thres, conf_thres)
446
+ else:
447
+ boxes = tf.expand_dims(boxes, 2)
448
+ nms = tf.image.combined_non_max_suppression(boxes,
449
+ scores,
450
+ topk_per_class,
451
+ topk_all,
452
+ iou_thres,
453
+ conf_thres,
454
+ clip_boxes=False)
455
+ return nms, x[1]
456
+ return x[0] # output only first tensor [1,6300,85] = [xywh, conf, class0, class1, ...]
457
+ # x = x[0][0] # [x(1,6300,85), ...] to x(6300,85)
458
+ # xywh = x[..., :4] # x(6300,4) boxes
459
+ # conf = x[..., 4:5] # x(6300,1) confidences
460
+ # cls = tf.reshape(tf.cast(tf.argmax(x[..., 5:], axis=1), tf.float32), (-1, 1)) # x(6300,1) classes
461
+ # return tf.concat([conf, cls, xywh], 1)
462
+
463
+ @staticmethod
464
+ def _xywh2xyxy(xywh):
465
+ # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
466
+ x, y, w, h = tf.split(xywh, num_or_size_splits=4, axis=-1)
467
+ return tf.concat([x - w / 2, y - h / 2, x + w / 2, y + h / 2], axis=-1)
468
+
469
+
470
+ class AgnosticNMS(keras.layers.Layer):
471
+ # TF Agnostic NMS
472
+ def call(self, input, topk_all, iou_thres, conf_thres):
473
+ # wrap map_fn to avoid TypeSpec related error https://stackoverflow.com/a/65809989/3036450
474
+ return tf.map_fn(lambda x: self._nms(x, topk_all, iou_thres, conf_thres),
475
+ input,
476
+ fn_output_signature=(tf.float32, tf.float32, tf.float32, tf.int32),
477
+ name='agnostic_nms')
478
+
479
+ @staticmethod
480
+ def _nms(x, topk_all=100, iou_thres=0.45, conf_thres=0.25): # agnostic NMS
481
+ boxes, classes, scores = x
482
+ class_inds = tf.cast(tf.argmax(classes, axis=-1), tf.float32)
483
+ scores_inp = tf.reduce_max(scores, -1)
484
+ selected_inds = tf.image.non_max_suppression(boxes,
485
+ scores_inp,
486
+ max_output_size=topk_all,
487
+ iou_threshold=iou_thres,
488
+ score_threshold=conf_thres)
489
+ selected_boxes = tf.gather(boxes, selected_inds)
490
+ padded_boxes = tf.pad(selected_boxes,
491
+ paddings=[[0, topk_all - tf.shape(selected_boxes)[0]], [0, 0]],
492
+ mode="CONSTANT",
493
+ constant_values=0.0)
494
+ selected_scores = tf.gather(scores_inp, selected_inds)
495
+ padded_scores = tf.pad(selected_scores,
496
+ paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
497
+ mode="CONSTANT",
498
+ constant_values=-1.0)
499
+ selected_classes = tf.gather(class_inds, selected_inds)
500
+ padded_classes = tf.pad(selected_classes,
501
+ paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
502
+ mode="CONSTANT",
503
+ constant_values=-1.0)
504
+ valid_detections = tf.shape(selected_inds)[0]
505
+ return padded_boxes, padded_scores, padded_classes, valid_detections
506
+
507
+
508
+ def activations(act=nn.SiLU):
509
+ # Returns TF activation from input PyTorch activation
510
+ if isinstance(act, nn.LeakyReLU):
511
+ return lambda x: keras.activations.relu(x, alpha=0.1)
512
+ elif isinstance(act, nn.Hardswish):
513
+ return lambda x: x * tf.nn.relu6(x + 3) * 0.166666667
514
+ elif isinstance(act, (nn.SiLU, SiLU)):
515
+ return lambda x: keras.activations.swish(x)
516
+ else:
517
+ raise Exception(f'no matching TensorFlow activation found for PyTorch activation {act}')
518
+
519
+
520
+ def representative_dataset_gen(dataset, ncalib=100):
521
+ # Representative dataset generator for use with converter.representative_dataset, returns a generator of np arrays
522
+ for n, (path, img, im0s, vid_cap, string) in enumerate(dataset):
523
+ im = np.transpose(img, [1, 2, 0])
524
+ im = np.expand_dims(im, axis=0).astype(np.float32)
525
+ im /= 255
526
+ yield [im]
527
+ if n >= ncalib:
528
+ break
529
+
530
+
531
+ def run(
532
+ weights=ROOT / 'yolov5s.pt', # weights path
533
+ imgsz=(640, 640), # inference size h,w
534
+ batch_size=1, # batch size
535
+ dynamic=False, # dynamic batch size
536
+ ):
537
+ # PyTorch model
538
+ im = torch.zeros((batch_size, 3, *imgsz)) # BCHW image
539
+ model = attempt_load(weights, device=torch.device('cpu'), inplace=True, fuse=False)
540
+ _ = model(im) # inference
541
+ model.info()
542
+
543
+ # TensorFlow model
544
+ im = tf.zeros((batch_size, *imgsz, 3)) # BHWC image
545
+ tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
546
+ _ = tf_model.predict(im) # inference
547
+
548
+ # Keras model
549
+ im = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size)
550
+ keras_model = keras.Model(inputs=im, outputs=tf_model.predict(im))
551
+ keras_model.summary()
552
+
553
+ LOGGER.info('PyTorch, TensorFlow and Keras models successfully verified.\nUse export.py for TF model export.')
554
+
555
+
556
+ def parse_opt():
557
+ parser = argparse.ArgumentParser()
558
+ parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path')
559
+ parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
560
+ parser.add_argument('--batch-size', type=int, default=1, help='batch size')
561
+ parser.add_argument('--dynamic', action='store_true', help='dynamic batch size')
562
+ opt = parser.parse_args()
563
+ opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
564
+ print_args(vars(opt))
565
+ return opt
566
+
567
+
568
+ def main(opt):
569
+ run(**vars(opt))
570
+
571
+
572
+ if __name__ == "__main__":
573
+ opt = parse_opt()
574
+ main(opt)
models/yolo.py ADDED
@@ -0,0 +1,337 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ """
3
+ YOLO-specific modules
4
+
5
+ Usage:
6
+ $ python path/to/models/yolo.py --cfg yolov5s.yaml
7
+ """
8
+
9
+ import argparse
10
+ import contextlib
11
+ import os
12
+ import platform
13
+ import sys
14
+ from copy import deepcopy
15
+ from pathlib import Path
16
+
17
+ FILE = Path(__file__).resolve()
18
+ ROOT = FILE.parents[1] # YOLOv5 root directory
19
+ if str(ROOT) not in sys.path:
20
+ sys.path.append(str(ROOT)) # add ROOT to PATH
21
+ if platform.system() != 'Windows':
22
+ ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
23
+
24
+ from models.common import *
25
+ from models.experimental import *
26
+ from utils.autoanchor import check_anchor_order
27
+ from utils.general import LOGGER, check_version, check_yaml, make_divisible, print_args
28
+ from utils.plots import feature_visualization
29
+ from utils.torch_utils import (fuse_conv_and_bn, initialize_weights, model_info, profile, scale_img, select_device,
30
+ time_sync)
31
+
32
+ try:
33
+ import thop # for FLOPs computation
34
+ except ImportError:
35
+ thop = None
36
+
37
+
38
+ class Detect(nn.Module):
39
+ stride = None # strides computed during build
40
+ onnx_dynamic = False # ONNX export parameter
41
+ export = False # export mode
42
+
43
+ def __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer
44
+ super().__init__()
45
+ self.nc = nc # number of classes
46
+ self.no = nc + 5 # number of outputs per anchor
47
+ self.nl = len(anchors) # number of detection layers
48
+ self.na = len(anchors[0]) // 2 # number of anchors
49
+ self.grid = [torch.zeros(1)] * self.nl # init grid
50
+ self.anchor_grid = [torch.zeros(1)] * self.nl # init anchor grid
51
+ self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2)) # shape(nl,na,2)
52
+ self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
53
+ self.inplace = inplace # use inplace ops (e.g. slice assignment)
54
+
55
+ def forward(self, x):
56
+ z = [] # inference output
57
+ for i in range(self.nl):
58
+ x[i] = self.m[i](x[i]) # conv
59
+ bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
60
+ x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
61
+
62
+ if not self.training: # inference
63
+ if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
64
+ self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
65
+
66
+ y = x[i].sigmoid()
67
+ if self.inplace:
68
+ y[..., 0:2] = (y[..., 0:2] * 2 + self.grid[i]) * self.stride[i] # xy
69
+ y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
70
+ else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
71
+ xy, wh, conf = y.split((2, 2, self.nc + 1), 4) # y.tensor_split((2, 4, 5), 4) # torch 1.8.0
72
+ xy = (xy * 2 + self.grid[i]) * self.stride[i] # xy
73
+ wh = (wh * 2) ** 2 * self.anchor_grid[i] # wh
74
+ y = torch.cat((xy, wh, conf), 4)
75
+ z.append(y.view(bs, -1, self.no))
76
+
77
+ return x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x)
78
+
79
+ def _make_grid(self, nx=20, ny=20, i=0):
80
+ d = self.anchors[i].device
81
+ t = self.anchors[i].dtype
82
+ shape = 1, self.na, ny, nx, 2 # grid shape
83
+ y, x = torch.arange(ny, device=d, dtype=t), torch.arange(nx, device=d, dtype=t)
84
+ if check_version(torch.__version__, '1.10.0'): # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
85
+ yv, xv = torch.meshgrid(y, x, indexing='ij')
86
+ else:
87
+ yv, xv = torch.meshgrid(y, x)
88
+ grid = torch.stack((xv, yv), 2).expand(shape) - 0.5 # add grid offset, i.e. y = 2.0 * x - 0.5
89
+ anchor_grid = (self.anchors[i] * self.stride[i]).view((1, self.na, 1, 1, 2)).expand(shape)
90
+ return grid, anchor_grid
91
+
92
+
93
+ class Model(nn.Module):
94
+ # YOLOv5 model
95
+ def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes
96
+ super().__init__()
97
+ if isinstance(cfg, dict):
98
+ self.yaml = cfg # model dict
99
+ else: # is *.yaml
100
+ import yaml # for torch hub
101
+ self.yaml_file = Path(cfg).name
102
+ with open(cfg, encoding='ascii', errors='ignore') as f:
103
+ self.yaml = yaml.safe_load(f) # model dict
104
+
105
+ # Define model
106
+ ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
107
+ if nc and nc != self.yaml['nc']:
108
+ LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
109
+ self.yaml['nc'] = nc # override yaml value
110
+ if anchors:
111
+ LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')
112
+ self.yaml['anchors'] = round(anchors) # override yaml value
113
+ self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
114
+ self.names = [str(i) for i in range(self.yaml['nc'])] # default names
115
+ self.inplace = self.yaml.get('inplace', True)
116
+
117
+ # Build strides, anchors
118
+ m = self.model[-1] # Detect()
119
+ if isinstance(m, Detect):
120
+ s = 256 # 2x min stride
121
+ m.inplace = self.inplace
122
+ m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
123
+ check_anchor_order(m) # must be in pixel-space (not grid-space)
124
+ m.anchors /= m.stride.view(-1, 1, 1)
125
+ self.stride = m.stride
126
+ self._initialize_biases() # only run once
127
+
128
+ # Init weights, biases
129
+ initialize_weights(self)
130
+ self.info()
131
+ LOGGER.info('')
132
+
133
+ def forward(self, x, augment=False, profile=False, visualize=False):
134
+ if augment:
135
+ return self._forward_augment(x) # augmented inference, None
136
+ return self._forward_once(x, profile, visualize) # single-scale inference, train
137
+
138
+ def _forward_augment(self, x):
139
+ img_size = x.shape[-2:] # height, width
140
+ s = [1, 0.83, 0.67] # scales
141
+ f = [None, 3, None] # flips (2-ud, 3-lr)
142
+ y = [] # outputs
143
+ for si, fi in zip(s, f):
144
+ xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
145
+ yi = self._forward_once(xi)[0] # forward
146
+ # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
147
+ yi = self._descale_pred(yi, fi, si, img_size)
148
+ y.append(yi)
149
+ y = self._clip_augmented(y) # clip augmented tails
150
+ return torch.cat(y, 1), None # augmented inference, train
151
+
152
+ def _forward_once(self, x, profile=False, visualize=False):
153
+ y, dt = [], [] # outputs
154
+ for m in self.model:
155
+ if m.f != -1: # if not from previous layer
156
+ x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
157
+ if profile:
158
+ self._profile_one_layer(m, x, dt)
159
+ x = m(x) # run
160
+ y.append(x if m.i in self.save else None) # save output
161
+ if visualize:
162
+ feature_visualization(x, m.type, m.i, save_dir=visualize)
163
+ return x
164
+
165
+ def _descale_pred(self, p, flips, scale, img_size):
166
+ # de-scale predictions following augmented inference (inverse operation)
167
+ if self.inplace:
168
+ p[..., :4] /= scale # de-scale
169
+ if flips == 2:
170
+ p[..., 1] = img_size[0] - p[..., 1] # de-flip ud
171
+ elif flips == 3:
172
+ p[..., 0] = img_size[1] - p[..., 0] # de-flip lr
173
+ else:
174
+ x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale # de-scale
175
+ if flips == 2:
176
+ y = img_size[0] - y # de-flip ud
177
+ elif flips == 3:
178
+ x = img_size[1] - x # de-flip lr
179
+ p = torch.cat((x, y, wh, p[..., 4:]), -1)
180
+ return p
181
+
182
+ def _clip_augmented(self, y):
183
+ # Clip YOLOv5 augmented inference tails
184
+ nl = self.model[-1].nl # number of detection layers (P3-P5)
185
+ g = sum(4 ** x for x in range(nl)) # grid points
186
+ e = 1 # exclude layer count
187
+ i = (y[0].shape[1] // g) * sum(4 ** x for x in range(e)) # indices
188
+ y[0] = y[0][:, :-i] # large
189
+ i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) # indices
190
+ y[-1] = y[-1][:, i:] # small
191
+ return y
192
+
193
+ def _profile_one_layer(self, m, x, dt):
194
+ c = isinstance(m, Detect) # is final layer, copy input as inplace fix
195
+ o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs
196
+ t = time_sync()
197
+ for _ in range(10):
198
+ m(x.copy() if c else x)
199
+ dt.append((time_sync() - t) * 100)
200
+ if m == self.model[0]:
201
+ LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} module")
202
+ LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}')
203
+ if c:
204
+ LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total")
205
+
206
+ def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
207
+ # https://arxiv.org/abs/1708.02002 section 3.3
208
+ # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
209
+ m = self.model[-1] # Detect() module
210
+ for mi, s in zip(m.m, m.stride): # from
211
+ b = mi.bias.view(m.na, -1).detach() # conv.bias(255) to (3,85)
212
+ b[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
213
+ b[:, 5:] += math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # cls
214
+ mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
215
+
216
+ def _print_biases(self):
217
+ m = self.model[-1] # Detect() module
218
+ for mi in m.m: # from
219
+ b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
220
+ LOGGER.info(
221
+ ('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
222
+
223
+ # def _print_weights(self):
224
+ # for m in self.model.modules():
225
+ # if type(m) is Bottleneck:
226
+ # LOGGER.info('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights
227
+
228
+ def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
229
+ LOGGER.info('Fusing layers... ')
230
+ for m in self.model.modules():
231
+ if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
232
+ m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
233
+ delattr(m, 'bn') # remove batchnorm
234
+ m.forward = m.forward_fuse # update forward
235
+ self.info()
236
+ return self
237
+
238
+ def info(self, verbose=False, img_size=640): # print model information
239
+ model_info(self, verbose, img_size)
240
+
241
+ def _apply(self, fn):
242
+ # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
243
+ self = super()._apply(fn)
244
+ m = self.model[-1] # Detect()
245
+ if isinstance(m, Detect):
246
+ m.stride = fn(m.stride)
247
+ m.grid = list(map(fn, m.grid))
248
+ if isinstance(m.anchor_grid, list):
249
+ m.anchor_grid = list(map(fn, m.anchor_grid))
250
+ return self
251
+
252
+
253
+ def parse_model(d, ch): # model_dict, input_channels(3)
254
+ LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}")
255
+ anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
256
+ na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
257
+ no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
258
+
259
+ layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
260
+ for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
261
+ m = eval(m) if isinstance(m, str) else m # eval strings
262
+ for j, a in enumerate(args):
263
+ with contextlib.suppress(NameError):
264
+ args[j] = eval(a) if isinstance(a, str) else a # eval strings
265
+
266
+ n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain
267
+ if m in (Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
268
+ BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x):
269
+ c1, c2 = ch[f], args[0]
270
+ if c2 != no: # if not output
271
+ c2 = make_divisible(c2 * gw, 8)
272
+
273
+ args = [c1, c2, *args[1:]]
274
+ if m in [BottleneckCSP, C3, C3TR, C3Ghost, C3x]:
275
+ args.insert(2, n) # number of repeats
276
+ n = 1
277
+ elif m is nn.BatchNorm2d:
278
+ args = [ch[f]]
279
+ elif m is Concat:
280
+ c2 = sum(ch[x] for x in f)
281
+ elif m is Detect:
282
+ args.append([ch[x] for x in f])
283
+ if isinstance(args[1], int): # number of anchors
284
+ args[1] = [list(range(args[1] * 2))] * len(f)
285
+ elif m is Contract:
286
+ c2 = ch[f] * args[0] ** 2
287
+ elif m is Expand:
288
+ c2 = ch[f] // args[0] ** 2
289
+ else:
290
+ c2 = ch[f]
291
+
292
+ m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
293
+ t = str(m)[8:-2].replace('__main__.', '') # module type
294
+ np = sum(x.numel() for x in m_.parameters()) # number params
295
+ m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
296
+ LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f} {t:<40}{str(args):<30}') # print
297
+ save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
298
+ layers.append(m_)
299
+ if i == 0:
300
+ ch = []
301
+ ch.append(c2)
302
+ return nn.Sequential(*layers), sorted(save)
303
+
304
+
305
+ if __name__ == '__main__':
306
+ parser = argparse.ArgumentParser()
307
+ parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml')
308
+ parser.add_argument('--batch-size', type=int, default=1, help='total batch size for all GPUs')
309
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
310
+ parser.add_argument('--profile', action='store_true', help='profile model speed')
311
+ parser.add_argument('--line-profile', action='store_true', help='profile model speed layer by layer')
312
+ parser.add_argument('--test', action='store_true', help='test all yolo*.yaml')
313
+ opt = parser.parse_args()
314
+ opt.cfg = check_yaml(opt.cfg) # check YAML
315
+ print_args(vars(opt))
316
+ device = select_device(opt.device)
317
+
318
+ # Create model
319
+ im = torch.rand(opt.batch_size, 3, 640, 640).to(device)
320
+ model = Model(opt.cfg).to(device)
321
+
322
+ # Options
323
+ if opt.line_profile: # profile layer by layer
324
+ _ = model(im, profile=True)
325
+
326
+ elif opt.profile: # profile forward-backward
327
+ results = profile(input=im, ops=[model], n=3)
328
+
329
+ elif opt.test: # test all models
330
+ for cfg in Path(ROOT / 'models').rglob('yolo*.yaml'):
331
+ try:
332
+ _ = Model(cfg)
333
+ except Exception as e:
334
+ print(f'Error in {cfg}: {e}')
335
+
336
+ else: # report fused model summary
337
+ model.fuse()
models/yolov5l.yaml ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 1.0 # model depth multiple
6
+ width_multiple: 1.0 # layer channel multiple
7
+ anchors:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+ # YOLOv5 v6.0 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17
+ [-1, 3, C3, [128]],
18
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19
+ [-1, 6, C3, [256]],
20
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21
+ [-1, 9, C3, [512]],
22
+ [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23
+ [-1, 3, C3, [1024]],
24
+ [-1, 1, SPPF, [1024, 5]], # 9
25
+ ]
26
+
27
+ # YOLOv5 v6.0 head
28
+ head:
29
+ [[-1, 1, Conv, [512, 1, 1]],
30
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
32
+ [-1, 3, C3, [512, False]], # 13
33
+
34
+ [-1, 1, Conv, [256, 1, 1]],
35
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
37
+ [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38
+
39
+ [-1, 1, Conv, [256, 3, 2]],
40
+ [[-1, 14], 1, Concat, [1]], # cat head P4
41
+ [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42
+
43
+ [-1, 1, Conv, [512, 3, 2]],
44
+ [[-1, 10], 1, Concat, [1]], # cat head P5
45
+ [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46
+
47
+ [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48
+ ]
models/yolov5m.yaml ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 0.67 # model depth multiple
6
+ width_multiple: 0.75 # layer channel multiple
7
+ anchors:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+ # YOLOv5 v6.0 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17
+ [-1, 3, C3, [128]],
18
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19
+ [-1, 6, C3, [256]],
20
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21
+ [-1, 9, C3, [512]],
22
+ [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23
+ [-1, 3, C3, [1024]],
24
+ [-1, 1, SPPF, [1024, 5]], # 9
25
+ ]
26
+
27
+ # YOLOv5 v6.0 head
28
+ head:
29
+ [[-1, 1, Conv, [512, 1, 1]],
30
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
32
+ [-1, 3, C3, [512, False]], # 13
33
+
34
+ [-1, 1, Conv, [256, 1, 1]],
35
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
37
+ [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38
+
39
+ [-1, 1, Conv, [256, 3, 2]],
40
+ [[-1, 14], 1, Concat, [1]], # cat head P4
41
+ [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42
+
43
+ [-1, 1, Conv, [512, 3, 2]],
44
+ [[-1, 10], 1, Concat, [1]], # cat head P5
45
+ [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46
+
47
+ [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48
+ ]
models/yolov5n.yaml ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 0.33 # model depth multiple
6
+ width_multiple: 0.25 # layer channel multiple
7
+ anchors:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+ # YOLOv5 v6.0 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17
+ [-1, 3, C3, [128]],
18
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19
+ [-1, 6, C3, [256]],
20
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21
+ [-1, 9, C3, [512]],
22
+ [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23
+ [-1, 3, C3, [1024]],
24
+ [-1, 1, SPPF, [1024, 5]], # 9
25
+ ]
26
+
27
+ # YOLOv5 v6.0 head
28
+ head:
29
+ [[-1, 1, Conv, [512, 1, 1]],
30
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
32
+ [-1, 3, C3, [512, False]], # 13
33
+
34
+ [-1, 1, Conv, [256, 1, 1]],
35
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
37
+ [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38
+
39
+ [-1, 1, Conv, [256, 3, 2]],
40
+ [[-1, 14], 1, Concat, [1]], # cat head P4
41
+ [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42
+
43
+ [-1, 1, Conv, [512, 3, 2]],
44
+ [[-1, 10], 1, Concat, [1]], # cat head P5
45
+ [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46
+
47
+ [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48
+ ]
models/yolov5s.yaml ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+
3
+ # Parameters
4
+ nc: 80 # number of classes
5
+ depth_multiple: 0.33 # model depth multiple
6
+ width_multiple: 0.50 # layer channel multiple
7
+ anchors:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+ # YOLOv5 v6.0 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
16
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17
+ [-1, 3, C3, [128]],
18
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19
+ [-1, 6, C3, [256]],
20
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21
+ [-1, 9, C3, [512]],
22
+ [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23
+ [-1, 3, C3, [1024]],
24
+ [-1, 1, SPPF, [1024, 5]], # 9
25
+ ]
26
+
27
+ # YOLOv5 v6.0 head
28
+ head:
29
+ [[-1, 1, Conv, [512, 1, 1]],
30
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
32
+ [-1, 3, C3, [512, False]], # 13
33
+
34
+ [-1, 1, Conv, [256, 1, 1]],
35
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
37
+ [-1, 3, C3, [256, False]], # 17 (P3/8-small)
38
+
39
+ [-1, 1, Conv, [256, 3, 2]],
40
+ [[-1, 14], 1, Concat, [1]], # cat head P4
41
+ [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
42
+
43
+ [-1, 1, Conv, [512, 3, 2]],
44
+ [[-1, 10], 1, Concat, [1]], # cat head P5
45
+ [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
46
+
47
+ [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48
+ ]