imkhan107 commited on
Commit
2503a38
1 Parent(s): 9f0a3e8

Upload 25 files

Browse files
Files changed (25) hide show
  1. CONTRIBUTING.md +98 -0
  2. LICENSE +674 -0
  3. README.md +11 -12
  4. app.py +432 -0
  5. appledd-yolov5s-800.pb +3 -0
  6. daisi.py +432 -0
  7. data.yaml +5 -0
  8. detect.py +257 -0
  9. export.py +618 -0
  10. hubconf.py +160 -0
  11. labels.txt +11 -0
  12. logo.jpg +0 -0
  13. mobilenetv2-apple-10-class-pytorch.pth +3 -0
  14. packages.txt +1 -0
  15. requirements.txt +15 -0
  16. sample.jpg +0 -0
  17. setup.cfg +59 -0
  18. temp_image.jpg +0 -0
  19. test.jpg +0 -0
  20. test1.jpg +0 -0
  21. test2.jpg +0 -0
  22. test3.jpg +0 -0
  23. train.py +633 -0
  24. unnamed.jpg +0 -0
  25. val.py +396 -0
CONTRIBUTING.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Contributing to YOLOv5 🚀
2
+
3
+ We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible, whether it's:
4
+
5
+ - Reporting a bug
6
+ - Discussing the current state of the code
7
+ - Submitting a fix
8
+ - Proposing a new feature
9
+ - Becoming a maintainer
10
+
11
+ YOLOv5 works so well due to our combined community effort, and for every small improvement you contribute you will be
12
+ helping push the frontiers of what's possible in AI 😃!
13
+
14
+ ## Submitting a Pull Request (PR) 🛠️
15
+
16
+ Submitting a PR is easy! This example shows how to submit a PR for updating `requirements.txt` in 4 steps:
17
+
18
+ ### 1. Select File to Update
19
+
20
+ Select `requirements.txt` to update by clicking on it in GitHub.
21
+
22
+ <p align="center"><img width="800" alt="PR_step1" src="https://user-images.githubusercontent.com/26833433/122260847-08be2600-ced4-11eb-828b-8287ace4136c.png"></p>
23
+
24
+ ### 2. Click 'Edit this file'
25
+
26
+ Button is in top-right corner.
27
+
28
+ <p align="center"><img width="800" alt="PR_step2" src="https://user-images.githubusercontent.com/26833433/122260844-06f46280-ced4-11eb-9eec-b8a24be519ca.png"></p>
29
+
30
+ ### 3. Make Changes
31
+
32
+ Change `matplotlib` version from `3.2.2` to `3.3`.
33
+
34
+ <p align="center"><img width="800" alt="PR_step3" src="https://user-images.githubusercontent.com/26833433/122260853-0a87e980-ced4-11eb-9fd2-3650fb6e0842.png"></p>
35
+
36
+ ### 4. Preview Changes and Submit PR
37
+
38
+ Click on the **Preview changes** tab to verify your updates. At the bottom of the screen select 'Create a **new branch**
39
+ for this commit', assign your branch a descriptive name such as `fix/matplotlib_version` and click the green **Propose
40
+ changes** button. All done, your PR is now submitted to YOLOv5 for review and approval 😃!
41
+
42
+ <p align="center"><img width="800" alt="PR_step4" src="https://user-images.githubusercontent.com/26833433/122260856-0b208000-ced4-11eb-8e8e-77b6151cbcc3.png"></p>
43
+
44
+ ### PR recommendations
45
+
46
+ To allow your work to be integrated as seamlessly as possible, we advise you to:
47
+
48
+ - ✅ Verify your PR is **up-to-date with upstream/master.** If your PR is behind upstream/master an
49
+ automatic [GitHub Actions](https://github.com/ultralytics/yolov5/blob/master/.github/workflows/rebase.yml) merge may
50
+ be attempted by writing /rebase in a new comment, or by running the following code, replacing 'feature' with the name
51
+ of your local branch:
52
+
53
+ ```bash
54
+ git remote add upstream https://github.com/ultralytics/yolov5.git
55
+ git fetch upstream
56
+ # git checkout feature # <--- replace 'feature' with local branch name
57
+ git merge upstream/master
58
+ git push -u origin -f
59
+ ```
60
+
61
+ - ✅ Verify all Continuous Integration (CI) **checks are passing**.
62
+ - ✅ Reduce changes to the absolute **minimum** required for your bug fix or feature addition. _"It is not daily increase
63
+ but daily decrease, hack away the unessential. The closer to the source, the less wastage there is."_ — Bruce Lee
64
+
65
+ ## Submitting a Bug Report 🐛
66
+
67
+ If you spot a problem with YOLOv5 please submit a Bug Report!
68
+
69
+ For us to start investigating a possible problem we need to be able to reproduce it ourselves first. We've created a few
70
+ short guidelines below to help users provide what we need in order to get started.
71
+
72
+ When asking a question, people will be better able to provide help if you provide **code** that they can easily
73
+ understand and use to **reproduce** the problem. This is referred to by community members as creating
74
+ a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example). Your code that reproduces
75
+ the problem should be:
76
+
77
+ - ✅ **Minimal** – Use as little code as possible that still produces the same problem
78
+ - ✅ **Complete** – Provide **all** parts someone else needs to reproduce your problem in the question itself
79
+ - ✅ **Reproducible** – Test the code you're about to provide to make sure it reproduces the problem
80
+
81
+ In addition to the above requirements, for [Ultralytics](https://ultralytics.com/) to provide assistance your code
82
+ should be:
83
+
84
+ - ✅ **Current** – Verify that your code is up-to-date with current
85
+ GitHub [master](https://github.com/ultralytics/yolov5/tree/master), and if necessary `git pull` or `git clone` a new
86
+ copy to ensure your problem has not already been resolved by previous commits.
87
+ - ✅ **Unmodified** – Your problem must be reproducible without any modifications to the codebase in this
88
+ repository. [Ultralytics](https://ultralytics.com/) does not provide support for custom code ⚠️.
89
+
90
+ If you believe your problem meets all of the above criteria, please close this issue and raise a new one using the 🐛
91
+ **Bug Report** [template](https://github.com/ultralytics/yolov5/issues/new/choose) and providing
92
+ a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example) to help us better
93
+ understand and diagnose your problem.
94
+
95
+ ## License
96
+
97
+ By contributing, you agree that your contributions will be licensed under
98
+ the [GPL-3.0 license](https://choosealicense.com/licenses/gpl-3.0/)
LICENSE ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ GNU GENERAL PUBLIC LICENSE
2
+ Version 3, 29 June 2007
3
+
4
+ Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
5
+ Everyone is permitted to copy and distribute verbatim copies
6
+ of this license document, but changing it is not allowed.
7
+
8
+ Preamble
9
+
10
+ The GNU General Public License is a free, copyleft license for
11
+ software and other kinds of works.
12
+
13
+ The licenses for most software and other practical works are designed
14
+ to take away your freedom to share and change the works. By contrast,
15
+ the GNU General Public License is intended to guarantee your freedom to
16
+ share and change all versions of a program--to make sure it remains free
17
+ software for all its users. We, the Free Software Foundation, use the
18
+ GNU General Public License for most of our software; it applies also to
19
+ any other work released this way by its authors. You can apply it to
20
+ your programs, too.
21
+
22
+ When we speak of free software, we are referring to freedom, not
23
+ price. Our General Public Licenses are designed to make sure that you
24
+ have the freedom to distribute copies of free software (and charge for
25
+ them if you wish), that you receive source code or can get it if you
26
+ want it, that you can change the software or use pieces of it in new
27
+ free programs, and that you know you can do these things.
28
+
29
+ To protect your rights, we need to prevent others from denying you
30
+ these rights or asking you to surrender the rights. Therefore, you have
31
+ certain responsibilities if you distribute copies of the software, or if
32
+ you modify it: responsibilities to respect the freedom of others.
33
+
34
+ For example, if you distribute copies of such a program, whether
35
+ gratis or for a fee, you must pass on to the recipients the same
36
+ freedoms that you received. You must make sure that they, too, receive
37
+ or can get the source code. And you must show them these terms so they
38
+ know their rights.
39
+
40
+ Developers that use the GNU GPL protect your rights with two steps:
41
+ (1) assert copyright on the software, and (2) offer you this License
42
+ giving you legal permission to copy, distribute and/or modify it.
43
+
44
+ For the developers' and authors' protection, the GPL clearly explains
45
+ that there is no warranty for this free software. For both users' and
46
+ authors' sake, the GPL requires that modified versions be marked as
47
+ changed, so that their problems will not be attributed erroneously to
48
+ authors of previous versions.
49
+
50
+ Some devices are designed to deny users access to install or run
51
+ modified versions of the software inside them, although the manufacturer
52
+ can do so. This is fundamentally incompatible with the aim of
53
+ protecting users' freedom to change the software. The systematic
54
+ pattern of such abuse occurs in the area of products for individuals to
55
+ use, which is precisely where it is most unacceptable. Therefore, we
56
+ have designed this version of the GPL to prohibit the practice for those
57
+ products. If such problems arise substantially in other domains, we
58
+ stand ready to extend this provision to those domains in future versions
59
+ of the GPL, as needed to protect the freedom of users.
60
+
61
+ Finally, every program is threatened constantly by software patents.
62
+ States should not allow patents to restrict development and use of
63
+ software on general-purpose computers, but in those that do, we wish to
64
+ avoid the special danger that patents applied to a free program could
65
+ make it effectively proprietary. To prevent this, the GPL assures that
66
+ patents cannot be used to render the program non-free.
67
+
68
+ The precise terms and conditions for copying, distribution and
69
+ modification follow.
70
+
71
+ TERMS AND CONDITIONS
72
+
73
+ 0. Definitions.
74
+
75
+ "This License" refers to version 3 of the GNU General Public License.
76
+
77
+ "Copyright" also means copyright-like laws that apply to other kinds of
78
+ works, such as semiconductor masks.
79
+
80
+ "The Program" refers to any copyrightable work licensed under this
81
+ License. Each licensee is addressed as "you". "Licensees" and
82
+ "recipients" may be individuals or organizations.
83
+
84
+ To "modify" a work means to copy from or adapt all or part of the work
85
+ in a fashion requiring copyright permission, other than the making of an
86
+ exact copy. The resulting work is called a "modified version" of the
87
+ earlier work or a work "based on" the earlier work.
88
+
89
+ A "covered work" means either the unmodified Program or a work based
90
+ on the Program.
91
+
92
+ To "propagate" a work means to do anything with it that, without
93
+ permission, would make you directly or secondarily liable for
94
+ infringement under applicable copyright law, except executing it on a
95
+ computer or modifying a private copy. Propagation includes copying,
96
+ distribution (with or without modification), making available to the
97
+ public, and in some countries other activities as well.
98
+
99
+ To "convey" a work means any kind of propagation that enables other
100
+ parties to make or receive copies. Mere interaction with a user through
101
+ a computer network, with no transfer of a copy, is not conveying.
102
+
103
+ An interactive user interface displays "Appropriate Legal Notices"
104
+ to the extent that it includes a convenient and prominently visible
105
+ feature that (1) displays an appropriate copyright notice, and (2)
106
+ tells the user that there is no warranty for the work (except to the
107
+ extent that warranties are provided), that licensees may convey the
108
+ work under this License, and how to view a copy of this License. If
109
+ the interface presents a list of user commands or options, such as a
110
+ menu, a prominent item in the list meets this criterion.
111
+
112
+ 1. Source Code.
113
+
114
+ The "source code" for a work means the preferred form of the work
115
+ for making modifications to it. "Object code" means any non-source
116
+ form of a work.
117
+
118
+ A "Standard Interface" means an interface that either is an official
119
+ standard defined by a recognized standards body, or, in the case of
120
+ interfaces specified for a particular programming language, one that
121
+ is widely used among developers working in that language.
122
+
123
+ The "System Libraries" of an executable work include anything, other
124
+ than the work as a whole, that (a) is included in the normal form of
125
+ packaging a Major Component, but which is not part of that Major
126
+ Component, and (b) serves only to enable use of the work with that
127
+ Major Component, or to implement a Standard Interface for which an
128
+ implementation is available to the public in source code form. A
129
+ "Major Component", in this context, means a major essential component
130
+ (kernel, window system, and so on) of the specific operating system
131
+ (if any) on which the executable work runs, or a compiler used to
132
+ produce the work, or an object code interpreter used to run it.
133
+
134
+ The "Corresponding Source" for a work in object code form means all
135
+ the source code needed to generate, install, and (for an executable
136
+ work) run the object code and to modify the work, including scripts to
137
+ control those activities. However, it does not include the work's
138
+ System Libraries, or general-purpose tools or generally available free
139
+ programs which are used unmodified in performing those activities but
140
+ which are not part of the work. For example, Corresponding Source
141
+ includes interface definition files associated with source files for
142
+ the work, and the source code for shared libraries and dynamically
143
+ linked subprograms that the work is specifically designed to require,
144
+ such as by intimate data communication or control flow between those
145
+ subprograms and other parts of the work.
146
+
147
+ The Corresponding Source need not include anything that users
148
+ can regenerate automatically from other parts of the Corresponding
149
+ Source.
150
+
151
+ The Corresponding Source for a work in source code form is that
152
+ same work.
153
+
154
+ 2. Basic Permissions.
155
+
156
+ All rights granted under this License are granted for the term of
157
+ copyright on the Program, and are irrevocable provided the stated
158
+ conditions are met. This License explicitly affirms your unlimited
159
+ permission to run the unmodified Program. The output from running a
160
+ covered work is covered by this License only if the output, given its
161
+ content, constitutes a covered work. This License acknowledges your
162
+ rights of fair use or other equivalent, as provided by copyright law.
163
+
164
+ You may make, run and propagate covered works that you do not
165
+ convey, without conditions so long as your license otherwise remains
166
+ in force. You may convey covered works to others for the sole purpose
167
+ of having them make modifications exclusively for you, or provide you
168
+ with facilities for running those works, provided that you comply with
169
+ the terms of this License in conveying all material for which you do
170
+ not control copyright. Those thus making or running the covered works
171
+ for you must do so exclusively on your behalf, under your direction
172
+ and control, on terms that prohibit them from making any copies of
173
+ your copyrighted material outside their relationship with you.
174
+
175
+ Conveying under any other circumstances is permitted solely under
176
+ the conditions stated below. Sublicensing is not allowed; section 10
177
+ makes it unnecessary.
178
+
179
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180
+
181
+ No covered work shall be deemed part of an effective technological
182
+ measure under any applicable law fulfilling obligations under article
183
+ 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184
+ similar laws prohibiting or restricting circumvention of such
185
+ measures.
186
+
187
+ When you convey a covered work, you waive any legal power to forbid
188
+ circumvention of technological measures to the extent such circumvention
189
+ is effected by exercising rights under this License with respect to
190
+ the covered work, and you disclaim any intention to limit operation or
191
+ modification of the work as a means of enforcing, against the work's
192
+ users, your or third parties' legal rights to forbid circumvention of
193
+ technological measures.
194
+
195
+ 4. Conveying Verbatim Copies.
196
+
197
+ You may convey verbatim copies of the Program's source code as you
198
+ receive it, in any medium, provided that you conspicuously and
199
+ appropriately publish on each copy an appropriate copyright notice;
200
+ keep intact all notices stating that this License and any
201
+ non-permissive terms added in accord with section 7 apply to the code;
202
+ keep intact all notices of the absence of any warranty; and give all
203
+ recipients a copy of this License along with the Program.
204
+
205
+ You may charge any price or no price for each copy that you convey,
206
+ and you may offer support or warranty protection for a fee.
207
+
208
+ 5. Conveying Modified Source Versions.
209
+
210
+ You may convey a work based on the Program, or the modifications to
211
+ produce it from the Program, in the form of source code under the
212
+ terms of section 4, provided that you also meet all of these conditions:
213
+
214
+ a) The work must carry prominent notices stating that you modified
215
+ it, and giving a relevant date.
216
+
217
+ b) The work must carry prominent notices stating that it is
218
+ released under this License and any conditions added under section
219
+ 7. This requirement modifies the requirement in section 4 to
220
+ "keep intact all notices".
221
+
222
+ c) You must license the entire work, as a whole, under this
223
+ License to anyone who comes into possession of a copy. This
224
+ License will therefore apply, along with any applicable section 7
225
+ additional terms, to the whole of the work, and all its parts,
226
+ regardless of how they are packaged. This License gives no
227
+ permission to license the work in any other way, but it does not
228
+ invalidate such permission if you have separately received it.
229
+
230
+ d) If the work has interactive user interfaces, each must display
231
+ Appropriate Legal Notices; however, if the Program has interactive
232
+ interfaces that do not display Appropriate Legal Notices, your
233
+ work need not make them do so.
234
+
235
+ A compilation of a covered work with other separate and independent
236
+ works, which are not by their nature extensions of the covered work,
237
+ and which are not combined with it such as to form a larger program,
238
+ in or on a volume of a storage or distribution medium, is called an
239
+ "aggregate" if the compilation and its resulting copyright are not
240
+ used to limit the access or legal rights of the compilation's users
241
+ beyond what the individual works permit. Inclusion of a covered work
242
+ in an aggregate does not cause this License to apply to the other
243
+ parts of the aggregate.
244
+
245
+ 6. Conveying Non-Source Forms.
246
+
247
+ You may convey a covered work in object code form under the terms
248
+ of sections 4 and 5, provided that you also convey the
249
+ machine-readable Corresponding Source under the terms of this License,
250
+ in one of these ways:
251
+
252
+ a) Convey the object code in, or embodied in, a physical product
253
+ (including a physical distribution medium), accompanied by the
254
+ Corresponding Source fixed on a durable physical medium
255
+ customarily used for software interchange.
256
+
257
+ b) Convey the object code in, or embodied in, a physical product
258
+ (including a physical distribution medium), accompanied by a
259
+ written offer, valid for at least three years and valid for as
260
+ long as you offer spare parts or customer support for that product
261
+ model, to give anyone who possesses the object code either (1) a
262
+ copy of the Corresponding Source for all the software in the
263
+ product that is covered by this License, on a durable physical
264
+ medium customarily used for software interchange, for a price no
265
+ more than your reasonable cost of physically performing this
266
+ conveying of source, or (2) access to copy the
267
+ Corresponding Source from a network server at no charge.
268
+
269
+ c) Convey individual copies of the object code with a copy of the
270
+ written offer to provide the Corresponding Source. This
271
+ alternative is allowed only occasionally and noncommercially, and
272
+ only if you received the object code with such an offer, in accord
273
+ with subsection 6b.
274
+
275
+ d) Convey the object code by offering access from a designated
276
+ place (gratis or for a charge), and offer equivalent access to the
277
+ Corresponding Source in the same way through the same place at no
278
+ further charge. You need not require recipients to copy the
279
+ Corresponding Source along with the object code. If the place to
280
+ copy the object code is a network server, the Corresponding Source
281
+ may be on a different server (operated by you or a third party)
282
+ that supports equivalent copying facilities, provided you maintain
283
+ clear directions next to the object code saying where to find the
284
+ Corresponding Source. Regardless of what server hosts the
285
+ Corresponding Source, you remain obligated to ensure that it is
286
+ available for as long as needed to satisfy these requirements.
287
+
288
+ e) Convey the object code using peer-to-peer transmission, provided
289
+ you inform other peers where the object code and Corresponding
290
+ Source of the work are being offered to the general public at no
291
+ charge under subsection 6d.
292
+
293
+ A separable portion of the object code, whose source code is excluded
294
+ from the Corresponding Source as a System Library, need not be
295
+ included in conveying the object code work.
296
+
297
+ A "User Product" is either (1) a "consumer product", which means any
298
+ tangible personal property which is normally used for personal, family,
299
+ or household purposes, or (2) anything designed or sold for incorporation
300
+ into a dwelling. In determining whether a product is a consumer product,
301
+ doubtful cases shall be resolved in favor of coverage. For a particular
302
+ product received by a particular user, "normally used" refers to a
303
+ typical or common use of that class of product, regardless of the status
304
+ of the particular user or of the way in which the particular user
305
+ actually uses, or expects or is expected to use, the product. A product
306
+ is a consumer product regardless of whether the product has substantial
307
+ commercial, industrial or non-consumer uses, unless such uses represent
308
+ the only significant mode of use of the product.
309
+
310
+ "Installation Information" for a User Product means any methods,
311
+ procedures, authorization keys, or other information required to install
312
+ and execute modified versions of a covered work in that User Product from
313
+ a modified version of its Corresponding Source. The information must
314
+ suffice to ensure that the continued functioning of the modified object
315
+ code is in no case prevented or interfered with solely because
316
+ modification has been made.
317
+
318
+ If you convey an object code work under this section in, or with, or
319
+ specifically for use in, a User Product, and the conveying occurs as
320
+ part of a transaction in which the right of possession and use of the
321
+ User Product is transferred to the recipient in perpetuity or for a
322
+ fixed term (regardless of how the transaction is characterized), the
323
+ Corresponding Source conveyed under this section must be accompanied
324
+ by the Installation Information. But this requirement does not apply
325
+ if neither you nor any third party retains the ability to install
326
+ modified object code on the User Product (for example, the work has
327
+ been installed in ROM).
328
+
329
+ The requirement to provide Installation Information does not include a
330
+ requirement to continue to provide support service, warranty, or updates
331
+ for a work that has been modified or installed by the recipient, or for
332
+ the User Product in which it has been modified or installed. Access to a
333
+ network may be denied when the modification itself materially and
334
+ adversely affects the operation of the network or violates the rules and
335
+ protocols for communication across the network.
336
+
337
+ Corresponding Source conveyed, and Installation Information provided,
338
+ in accord with this section must be in a format that is publicly
339
+ documented (and with an implementation available to the public in
340
+ source code form), and must require no special password or key for
341
+ unpacking, reading or copying.
342
+
343
+ 7. Additional Terms.
344
+
345
+ "Additional permissions" are terms that supplement the terms of this
346
+ License by making exceptions from one or more of its conditions.
347
+ Additional permissions that are applicable to the entire Program shall
348
+ be treated as though they were included in this License, to the extent
349
+ that they are valid under applicable law. If additional permissions
350
+ apply only to part of the Program, that part may be used separately
351
+ under those permissions, but the entire Program remains governed by
352
+ this License without regard to the additional permissions.
353
+
354
+ When you convey a copy of a covered work, you may at your option
355
+ remove any additional permissions from that copy, or from any part of
356
+ it. (Additional permissions may be written to require their own
357
+ removal in certain cases when you modify the work.) You may place
358
+ additional permissions on material, added by you to a covered work,
359
+ for which you have or can give appropriate copyright permission.
360
+
361
+ Notwithstanding any other provision of this License, for material you
362
+ add to a covered work, you may (if authorized by the copyright holders of
363
+ that material) supplement the terms of this License with terms:
364
+
365
+ a) Disclaiming warranty or limiting liability differently from the
366
+ terms of sections 15 and 16 of this License; or
367
+
368
+ b) Requiring preservation of specified reasonable legal notices or
369
+ author attributions in that material or in the Appropriate Legal
370
+ Notices displayed by works containing it; or
371
+
372
+ c) Prohibiting misrepresentation of the origin of that material, or
373
+ requiring that modified versions of such material be marked in
374
+ reasonable ways as different from the original version; or
375
+
376
+ d) Limiting the use for publicity purposes of names of licensors or
377
+ authors of the material; or
378
+
379
+ e) Declining to grant rights under trademark law for use of some
380
+ trade names, trademarks, or service marks; or
381
+
382
+ f) Requiring indemnification of licensors and authors of that
383
+ material by anyone who conveys the material (or modified versions of
384
+ it) with contractual assumptions of liability to the recipient, for
385
+ any liability that these contractual assumptions directly impose on
386
+ those licensors and authors.
387
+
388
+ All other non-permissive additional terms are considered "further
389
+ restrictions" within the meaning of section 10. If the Program as you
390
+ received it, or any part of it, contains a notice stating that it is
391
+ governed by this License along with a term that is a further
392
+ restriction, you may remove that term. If a license document contains
393
+ a further restriction but permits relicensing or conveying under this
394
+ License, you may add to a covered work material governed by the terms
395
+ of that license document, provided that the further restriction does
396
+ not survive such relicensing or conveying.
397
+
398
+ If you add terms to a covered work in accord with this section, you
399
+ must place, in the relevant source files, a statement of the
400
+ additional terms that apply to those files, or a notice indicating
401
+ where to find the applicable terms.
402
+
403
+ Additional terms, permissive or non-permissive, may be stated in the
404
+ form of a separately written license, or stated as exceptions;
405
+ the above requirements apply either way.
406
+
407
+ 8. Termination.
408
+
409
+ You may not propagate or modify a covered work except as expressly
410
+ provided under this License. Any attempt otherwise to propagate or
411
+ modify it is void, and will automatically terminate your rights under
412
+ this License (including any patent licenses granted under the third
413
+ paragraph of section 11).
414
+
415
+ However, if you cease all violation of this License, then your
416
+ license from a particular copyright holder is reinstated (a)
417
+ provisionally, unless and until the copyright holder explicitly and
418
+ finally terminates your license, and (b) permanently, if the copyright
419
+ holder fails to notify you of the violation by some reasonable means
420
+ prior to 60 days after the cessation.
421
+
422
+ Moreover, your license from a particular copyright holder is
423
+ reinstated permanently if the copyright holder notifies you of the
424
+ violation by some reasonable means, this is the first time you have
425
+ received notice of violation of this License (for any work) from that
426
+ copyright holder, and you cure the violation prior to 30 days after
427
+ your receipt of the notice.
428
+
429
+ Termination of your rights under this section does not terminate the
430
+ licenses of parties who have received copies or rights from you under
431
+ this License. If your rights have been terminated and not permanently
432
+ reinstated, you do not qualify to receive new licenses for the same
433
+ material under section 10.
434
+
435
+ 9. Acceptance Not Required for Having Copies.
436
+
437
+ You are not required to accept this License in order to receive or
438
+ run a copy of the Program. Ancillary propagation of a covered work
439
+ occurring solely as a consequence of using peer-to-peer transmission
440
+ to receive a copy likewise does not require acceptance. However,
441
+ nothing other than this License grants you permission to propagate or
442
+ modify any covered work. These actions infringe copyright if you do
443
+ not accept this License. Therefore, by modifying or propagating a
444
+ covered work, you indicate your acceptance of this License to do so.
445
+
446
+ 10. Automatic Licensing of Downstream Recipients.
447
+
448
+ Each time you convey a covered work, the recipient automatically
449
+ receives a license from the original licensors, to run, modify and
450
+ propagate that work, subject to this License. You are not responsible
451
+ for enforcing compliance by third parties with this License.
452
+
453
+ An "entity transaction" is a transaction transferring control of an
454
+ organization, or substantially all assets of one, or subdividing an
455
+ organization, or merging organizations. If propagation of a covered
456
+ work results from an entity transaction, each party to that
457
+ transaction who receives a copy of the work also receives whatever
458
+ licenses to the work the party's predecessor in interest had or could
459
+ give under the previous paragraph, plus a right to possession of the
460
+ Corresponding Source of the work from the predecessor in interest, if
461
+ the predecessor has it or can get it with reasonable efforts.
462
+
463
+ You may not impose any further restrictions on the exercise of the
464
+ rights granted or affirmed under this License. For example, you may
465
+ not impose a license fee, royalty, or other charge for exercise of
466
+ rights granted under this License, and you may not initiate litigation
467
+ (including a cross-claim or counterclaim in a lawsuit) alleging that
468
+ any patent claim is infringed by making, using, selling, offering for
469
+ sale, or importing the Program or any portion of it.
470
+
471
+ 11. Patents.
472
+
473
+ A "contributor" is a copyright holder who authorizes use under this
474
+ License of the Program or a work on which the Program is based. The
475
+ work thus licensed is called the contributor's "contributor version".
476
+
477
+ A contributor's "essential patent claims" are all patent claims
478
+ owned or controlled by the contributor, whether already acquired or
479
+ hereafter acquired, that would be infringed by some manner, permitted
480
+ by this License, of making, using, or selling its contributor version,
481
+ but do not include claims that would be infringed only as a
482
+ consequence of further modification of the contributor version. For
483
+ purposes of this definition, "control" includes the right to grant
484
+ patent sublicenses in a manner consistent with the requirements of
485
+ this License.
486
+
487
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
488
+ patent license under the contributor's essential patent claims, to
489
+ make, use, sell, offer for sale, import and otherwise run, modify and
490
+ propagate the contents of its contributor version.
491
+
492
+ In the following three paragraphs, a "patent license" is any express
493
+ agreement or commitment, however denominated, not to enforce a patent
494
+ (such as an express permission to practice a patent or covenant not to
495
+ sue for patent infringement). To "grant" such a patent license to a
496
+ party means to make such an agreement or commitment not to enforce a
497
+ patent against the party.
498
+
499
+ If you convey a covered work, knowingly relying on a patent license,
500
+ and the Corresponding Source of the work is not available for anyone
501
+ to copy, free of charge and under the terms of this License, through a
502
+ publicly available network server or other readily accessible means,
503
+ then you must either (1) cause the Corresponding Source to be so
504
+ available, or (2) arrange to deprive yourself of the benefit of the
505
+ patent license for this particular work, or (3) arrange, in a manner
506
+ consistent with the requirements of this License, to extend the patent
507
+ license to downstream recipients. "Knowingly relying" means you have
508
+ actual knowledge that, but for the patent license, your conveying the
509
+ covered work in a country, or your recipient's use of the covered work
510
+ in a country, would infringe one or more identifiable patents in that
511
+ country that you have reason to believe are valid.
512
+
513
+ If, pursuant to or in connection with a single transaction or
514
+ arrangement, you convey, or propagate by procuring conveyance of, a
515
+ covered work, and grant a patent license to some of the parties
516
+ receiving the covered work authorizing them to use, propagate, modify
517
+ or convey a specific copy of the covered work, then the patent license
518
+ you grant is automatically extended to all recipients of the covered
519
+ work and works based on it.
520
+
521
+ A patent license is "discriminatory" if it does not include within
522
+ the scope of its coverage, prohibits the exercise of, or is
523
+ conditioned on the non-exercise of one or more of the rights that are
524
+ specifically granted under this License. You may not convey a covered
525
+ work if you are a party to an arrangement with a third party that is
526
+ in the business of distributing software, under which you make payment
527
+ to the third party based on the extent of your activity of conveying
528
+ the work, and under which the third party grants, to any of the
529
+ parties who would receive the covered work from you, a discriminatory
530
+ patent license (a) in connection with copies of the covered work
531
+ conveyed by you (or copies made from those copies), or (b) primarily
532
+ for and in connection with specific products or compilations that
533
+ contain the covered work, unless you entered into that arrangement,
534
+ or that patent license was granted, prior to 28 March 2007.
535
+
536
+ Nothing in this License shall be construed as excluding or limiting
537
+ any implied license or other defenses to infringement that may
538
+ otherwise be available to you under applicable patent law.
539
+
540
+ 12. No Surrender of Others' Freedom.
541
+
542
+ If conditions are imposed on you (whether by court order, agreement or
543
+ otherwise) that contradict the conditions of this License, they do not
544
+ excuse you from the conditions of this License. If you cannot convey a
545
+ covered work so as to satisfy simultaneously your obligations under this
546
+ License and any other pertinent obligations, then as a consequence you may
547
+ not convey it at all. For example, if you agree to terms that obligate you
548
+ to collect a royalty for further conveying from those to whom you convey
549
+ the Program, the only way you could satisfy both those terms and this
550
+ License would be to refrain entirely from conveying the Program.
551
+
552
+ 13. Use with the GNU Affero General Public License.
553
+
554
+ Notwithstanding any other provision of this License, you have
555
+ permission to link or combine any covered work with a work licensed
556
+ under version 3 of the GNU Affero General Public License into a single
557
+ combined work, and to convey the resulting work. The terms of this
558
+ License will continue to apply to the part which is the covered work,
559
+ but the special requirements of the GNU Affero General Public License,
560
+ section 13, concerning interaction through a network will apply to the
561
+ combination as such.
562
+
563
+ 14. Revised Versions of this License.
564
+
565
+ The Free Software Foundation may publish revised and/or new versions of
566
+ the GNU General Public License from time to time. Such new versions will
567
+ be similar in spirit to the present version, but may differ in detail to
568
+ address new problems or concerns.
569
+
570
+ Each version is given a distinguishing version number. If the
571
+ Program specifies that a certain numbered version of the GNU General
572
+ Public License "or any later version" applies to it, you have the
573
+ option of following the terms and conditions either of that numbered
574
+ version or of any later version published by the Free Software
575
+ Foundation. If the Program does not specify a version number of the
576
+ GNU General Public License, you may choose any version ever published
577
+ by the Free Software Foundation.
578
+
579
+ If the Program specifies that a proxy can decide which future
580
+ versions of the GNU General Public License can be used, that proxy's
581
+ public statement of acceptance of a version permanently authorizes you
582
+ to choose that version for the Program.
583
+
584
+ Later license versions may give you additional or different
585
+ permissions. However, no additional obligations are imposed on any
586
+ author or copyright holder as a result of your choosing to follow a
587
+ later version.
588
+
589
+ 15. Disclaimer of Warranty.
590
+
591
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592
+ APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593
+ HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594
+ OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595
+ THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596
+ PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597
+ IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598
+ ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599
+
600
+ 16. Limitation of Liability.
601
+
602
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603
+ WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604
+ THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605
+ GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606
+ USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607
+ DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608
+ PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609
+ EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610
+ SUCH DAMAGES.
611
+
612
+ 17. Interpretation of Sections 15 and 16.
613
+
614
+ If the disclaimer of warranty and limitation of liability provided
615
+ above cannot be given local legal effect according to their terms,
616
+ reviewing courts shall apply local law that most closely approximates
617
+ an absolute waiver of all civil liability in connection with the
618
+ Program, unless a warranty or assumption of liability accompanies a
619
+ copy of the Program in return for a fee.
620
+
621
+ END OF TERMS AND CONDITIONS
622
+
623
+ How to Apply These Terms to Your New Programs
624
+
625
+ If you develop a new program, and you want it to be of the greatest
626
+ possible use to the public, the best way to achieve this is to make it
627
+ free software which everyone can redistribute and change under these terms.
628
+
629
+ To do so, attach the following notices to the program. It is safest
630
+ to attach them to the start of each source file to most effectively
631
+ state the exclusion of warranty; and each file should have at least
632
+ the "copyright" line and a pointer to where the full notice is found.
633
+
634
+ <one line to give the program's name and a brief idea of what it does.>
635
+ Copyright (C) <year> <name of author>
636
+
637
+ This program is free software: you can redistribute it and/or modify
638
+ it under the terms of the GNU General Public License as published by
639
+ the Free Software Foundation, either version 3 of the License, or
640
+ (at your option) any later version.
641
+
642
+ This program is distributed in the hope that it will be useful,
643
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
644
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645
+ GNU General Public License for more details.
646
+
647
+ You should have received a copy of the GNU General Public License
648
+ along with this program. If not, see <http://www.gnu.org/licenses/>.
649
+
650
+ Also add information on how to contact you by electronic and paper mail.
651
+
652
+ If the program does terminal interaction, make it output a short
653
+ notice like this when it starts in an interactive mode:
654
+
655
+ <program> Copyright (C) <year> <name of author>
656
+ This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657
+ This is free software, and you are welcome to redistribute it
658
+ under certain conditions; type `show c' for details.
659
+
660
+ The hypothetical commands `show w' and `show c' should show the appropriate
661
+ parts of the General Public License. Of course, your program's commands
662
+ might be different; for a GUI interface, you would use an "about box".
663
+
664
+ You should also get your employer (if you work as a programmer) or school,
665
+ if any, to sign a "copyright disclaimer" for the program, if necessary.
666
+ For more information on this, and how to apply and follow the GNU GPL, see
667
+ <http://www.gnu.org/licenses/>.
668
+
669
+ The GNU General Public License does not permit incorporating your program
670
+ into proprietary programs. If your program is a subroutine library, you
671
+ may consider it more useful to permit linking proprietary applications with
672
+ the library. If this is what you want to do, use the GNU Lesser General
673
+ Public License instead of this License. But first, please read
674
+ <http://www.gnu.org/philosophy/why-not-lgpl.html>.
README.md CHANGED
@@ -1,13 +1,12 @@
1
- ---
2
- title: Appledd
3
- emoji: 🐨
4
- colorFrom: purple
5
- colorTo: green
6
- sdk: streamlit
7
- sdk_version: 1.31.1
8
- app_file: app.py
9
- pinned: false
10
- license: apache-2.0
11
- ---
12
 
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
1
+ <h2>Welcome to Deep Diagnosis</h2>
 
 
 
 
 
 
 
 
 
 
2
 
3
+ <p>
4
+ This app allows you to detect different apple diseases from leaf images.
5
+
6
+ <ul>
7
+ <li>Scab</li>
8
+ <li>Alternaria</li>
9
+ <li>MLB</li>
10
+ <li>Mossaic</li>
11
+ <li>Powdery Mildew</li>
12
+ <li>Necrosis</li>
app.py ADDED
@@ -0,0 +1,432 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import os
3
+ import platform
4
+ import sys
5
+ import streamlit as st
6
+ import torch
7
+ import torch.backends.cudnn as cudnn
8
+ import numpy as np
9
+ from pathlib import Path
10
+ from PIL import Image
11
+
12
+ from torchvision import transforms, models
13
+
14
+
15
+
16
+ FILE = Path(__file__).resolve()
17
+ ROOT = FILE.parents[0] # YOLOv5 root directory
18
+ if str(ROOT) not in sys.path:
19
+ sys.path.append(str(ROOT)) # add ROOT to PATH
20
+ ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
21
+
22
+ from models.common import DetectMultiBackend
23
+ from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadStreams
24
+ from utils.general import (LOGGER, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
25
+ increment_path, non_max_suppression, print_args, scale_coords, strip_optimizer, xyxy2xywh)
26
+ from utils.plots import Annotator, colors, save_one_box
27
+ from utils.torch_utils import select_device, time_sync
28
+
29
+ weights="appledd-yolov5s-800.pb"
30
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
31
+
32
+
33
+ #### Class for classification model
34
+ import torch.nn as nn
35
+ import torch.nn.functional as F
36
+ class NaturalSceneClassification(nn.Module):
37
+ def __init__(self):
38
+ super().__init__()
39
+ self.network = torch.hub.load('pytorch/vision:v0.10.0', 'mobilenet_v2', pretrained=True)
40
+
41
+ self.network.fc = nn.Sequential(nn.Linear(2048, 512),
42
+ nn.ReLU(),
43
+ nn.Dropout(0.2),
44
+ nn.Linear(512, 10),
45
+ nn.Softmax(dim=1))
46
+
47
+
48
+ def forward(self, xb):
49
+ return self.network(xb)
50
+
51
+ def training_step(self, batch):
52
+ images, labels = batch
53
+ images, labels = images.to(device), labels.to(device)
54
+ out = self(images) # Generate predictions
55
+ loss = F.cross_entropy(out, labels) # Calculate loss
56
+ return loss
57
+
58
+ def validation_step(self, batch):
59
+ images, labels = batch
60
+ images, labels = images.to(device), labels.to(device)
61
+ out = self(images) # Generate predictions
62
+ loss = F.cross_entropy(out, labels) # Calculate loss
63
+ acc = accuracy(out, labels) # Calculate accuracy
64
+ return {'val_loss': loss.detach(), 'val_acc': acc}
65
+
66
+ def validation_epoch_end(self, outputs):
67
+ batch_losses = [x['val_loss'] for x in outputs]
68
+ epoch_loss = torch.stack(batch_losses).mean() # Combine losses
69
+ batch_accs = [x['val_acc'] for x in outputs]
70
+ epoch_acc = torch.stack(batch_accs).mean() # Combine accuracies
71
+ return {'val_loss': epoch_loss.item(), 'val_acc': epoch_acc.item()}
72
+
73
+ def epoch_end(self, epoch, result):
74
+ print("Epoch [{}], train_loss: {:.4f}, val_loss: {:.4f}, val_acc: {:.4f}".format(
75
+ epoch, result['train_loss'], result['val_loss'], result['val_acc']))
76
+
77
+
78
+
79
+
80
+ def increase_contrast(image):
81
+ if isinstance(image, Image.Image):
82
+ # Convert the PIL image to a numpy array
83
+ image = np.array(image)
84
+
85
+ if not isinstance(image, np.ndarray):
86
+ raise ValueError("Input must be a valid numpy array")
87
+
88
+ # Convert the image to grayscale if it's in color
89
+ if len(image.shape) == 3:
90
+ image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
91
+
92
+ # Calculate min and max values
93
+ min_val = image.min()
94
+ max_val = image.max()
95
+
96
+ if min_val == max_val:
97
+ return image # Avoid division by zero
98
+
99
+ # Apply contrast stretching
100
+ contrast_stretched = cv2.convertScaleAbs(image, alpha=255.0 / (max_val - min_val), beta=-min_val)
101
+
102
+ return contrast_stretched
103
+
104
+ def reduce_noise(image, kernel_size=(3, 3)):
105
+ # Apply Gaussian blur to reduce noise
106
+ blurred = cv2.GaussianBlur(image, kernel_size, 0)
107
+
108
+ return blurred
109
+ @torch.no_grad()
110
+ def run(
111
+ weights=ROOT / 'yolov5s.pt', # model.pt path(s)
112
+ source=ROOT / 'data/images', # file/dir/URL/glob, 0 for webcam
113
+ data=ROOT / 'data.yaml', # dataset.yaml path
114
+ imgsz=(640, 640), # inference size (height, width)
115
+ conf_thres=0.25, # confidence threshold
116
+ iou_thres=0.45, # NMS IOU threshold
117
+ max_det=1000, # maximum detections per image
118
+ device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
119
+ view_img=False, # show results
120
+ save_txt=False, # save results to *.txt
121
+ save_conf=False, # save confidences in --save-txt labels
122
+ save_crop=False, # save cropped prediction boxes
123
+ nosave=False, # do not save images/videos
124
+ classes=None, # filter by class: --class 0, or --class 0 2 3
125
+ agnostic_nms=False, # class-agnostic NMS
126
+ augment=False, # augmented inference
127
+ visualize=False, # visualize features
128
+ update=False, # update all models
129
+ project=ROOT / 'runs/detect', # save results to project/name
130
+ name='exp', # save results to project/name
131
+ exist_ok=True, # existing project/name ok, do not increment
132
+ line_thickness=2, # bounding box thickness (pixels)
133
+ hide_labels=False, # hide labels
134
+ hide_conf=False, # hide confidences
135
+ half=False, # use FP16 half-precision inference
136
+ dnn=False, # use OpenCV DNN for ONNX inference
137
+
138
+ upl_image: np.ndarray=None,
139
+ #return_type: list=["Image", "Labels"]
140
+ ):
141
+
142
+ source = str(source)
143
+ save_img = not nosave and not source.endswith('.txt') # save inference images
144
+ is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
145
+ is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
146
+ webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
147
+ if is_url and is_file:
148
+ source = check_file(source) # download
149
+
150
+ # Directories
151
+ save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
152
+ (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
153
+
154
+ # Load model
155
+ device = select_device(device)
156
+ model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
157
+ stride, names, pt = model.stride, model.names, model.pt
158
+ imgsz = check_img_size(imgsz, s=stride) # check image size
159
+
160
+ # Dataloader
161
+ if webcam:
162
+ view_img = check_imshow()
163
+ cudnn.benchmark = True # set True to speed up constant image size inference
164
+ dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
165
+ bs = len(dataset) # batch_size
166
+ else:
167
+ dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
168
+ bs = 1 # batch_size
169
+ vid_path, vid_writer = [None] * bs, [None] * bs
170
+
171
+ # Run inference
172
+ model.warmup(imgsz=(1 if pt else bs, 3, *imgsz)) # warmup
173
+ seen, windows, dt = 0, [], [0.0, 0.0, 0.0]
174
+ for path, im, im0s, vid_cap, s in dataset:
175
+ t1 = time_sync()
176
+ #im=upl_image
177
+ im = torch.from_numpy(im).to(device)
178
+ im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
179
+ im /= 255 # 0 - 255 to 0.0 - 1.0
180
+ if len(im.shape) == 3:
181
+ im = im[None] # expand for batch dim
182
+ t2 = time_sync()
183
+ dt[0] += t2 - t1
184
+ # Contrast enhancement
185
+ # im = increase_contrast(im)
186
+
187
+ # # Noise reduction
188
+ # im = reduce_noise(im)
189
+ # Inference
190
+ visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
191
+ pred = model(im, augment=augment, visualize=visualize)
192
+ t3 = time_sync()
193
+ dt[1] += t3 - t2
194
+
195
+ # NMS
196
+ pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
197
+ dt[2] += time_sync() - t3
198
+
199
+ # Second-stage classifier (optional)
200
+ # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
201
+
202
+ # Process predictions
203
+ for i, det in enumerate(pred): # per image
204
+ seen += 1
205
+ if webcam: # batch_size >= 1
206
+ p, im0, frame = path[i], im0s[i].copy(), dataset.count
207
+ s += f'{i}: '
208
+ else:
209
+ p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
210
+
211
+ p = Path(p) # to Path
212
+ save_path = str(save_dir / p.name) # im.jpg
213
+ txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt
214
+ s += '%gx%g ' % im.shape[2:] # print string
215
+ gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
216
+ imc = im0.copy() if save_crop else im0 # for save_crop
217
+ annotator = Annotator(im0, line_width=line_thickness, example=str(names))
218
+ if len(det):
219
+ # Rescale boxes from img_size to im0 size
220
+ det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()
221
+
222
+ # Print results
223
+ for c in det[:, -1].unique():
224
+ n = (det[:, -1] == c).sum() # detections per class
225
+ s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
226
+
227
+ # Write results
228
+ for *xyxy, conf, cls in reversed(det):
229
+ if save_txt: # Write to file
230
+ xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
231
+ line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
232
+ with open(f'{txt_path}.txt', 'a') as f:
233
+ f.write(('%g ' * len(line)).rstrip() % line + '\n')
234
+
235
+ if save_img or save_crop or view_img: # Add bbox to image
236
+ c = int(cls) # integer class
237
+ label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
238
+ annotator.box_label(xyxy, label, color=colors(c, True))
239
+ if save_crop:
240
+ save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
241
+
242
+ # Stream results
243
+ im0 = annotator.result()
244
+ if view_img:
245
+ if platform.system() == 'Linux' and p not in windows:
246
+ windows.append(p)
247
+ cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
248
+ cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
249
+ cv2.imshow(str(p), im0)
250
+ cv2.waitKey(1) # 1 millisecond
251
+
252
+ # Save results (image with detections)
253
+ if save_img:
254
+ if dataset.mode == 'image':
255
+ #cv2.imwrite(save_path, im0)
256
+ print("Save")
257
+ else: # 'video' or 'stream'
258
+ if vid_path[i] != save_path: # new video
259
+ vid_path[i] = save_path
260
+ if isinstance(vid_writer[i], cv2.VideoWriter):
261
+ vid_writer[i].release() # release previous video writer
262
+ if vid_cap: # video
263
+ fps = vid_cap.get(cv2.CAP_PROP_FPS)
264
+ w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
265
+ h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
266
+ else: # stream
267
+ fps, w, h = 30, im0.shape[1], im0.shape[0]
268
+ save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
269
+ vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
270
+ vid_writer[i].write(im0)
271
+
272
+ # Print time (inference-only)
273
+ LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)')
274
+
275
+ # Print results
276
+ t = tuple(x / seen * 1E3 for x in dt) # speeds per image
277
+ LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
278
+ if save_txt or save_img:
279
+ s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
280
+ LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
281
+ if update:
282
+ strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
283
+ im0 = cv2.cvtColor(im0, cv2.COLOR_BGR2RGB)
284
+ return im0
285
+
286
+
287
+ def parse_opt():
288
+ parser = argparse.ArgumentParser()
289
+ parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path(s)')
290
+ parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob, 0 for webcam')
291
+ parser.add_argument('--data', type=str, default=ROOT / 'data.yaml', help='(optional) dataset.yaml path')
292
+ parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[800], help='inference size h,w')
293
+ parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
294
+ parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
295
+ parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
296
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
297
+ parser.add_argument('--view-img', action='store_true', help='show results')
298
+ parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
299
+ parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
300
+ parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
301
+ parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
302
+ parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
303
+ parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
304
+ parser.add_argument('--augment', action='store_true', help='augmented inference')
305
+ parser.add_argument('--visualize', action='store_true', help='visualize features')
306
+ parser.add_argument('--update', action='store_true', help='update all models')
307
+ parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')
308
+ parser.add_argument('--name', default='exp', help='save results to project/name')
309
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
310
+ parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
311
+ parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
312
+ parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
313
+ parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
314
+ parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
315
+ opt = parser.parse_args()
316
+ opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
317
+ print_args(vars(opt))
318
+ return opt
319
+
320
+ def classify(model,img):
321
+ img = img.to(device)
322
+ prediction = model(img)
323
+ sc, preds = torch.max(prediction, dim = 1)
324
+ return sc[0].item(),preds[0].item()
325
+
326
+
327
+ def main(opt,model,labels):
328
+ #check_requirements(exclude=('tensorboard', 'thop'))
329
+ #run(**vars(opt))
330
+ st.image("logo.jpg", caption="")
331
+ st.title("#Welcome to Deep Diagnosis")
332
+ # st.write("By: Dr. Asif Iqbal Khan")
333
+ st.markdown(
334
+ """
335
+ This app allows you to detect different apple diseases from leaf images.
336
+ 1) Scab
337
+ 2) Alternaria
338
+ 3) MLB
339
+ 4) Mossaic
340
+ 5) Powdery Mildew
341
+ 6) Necrosis
342
+ """
343
+ )
344
+ url="https://www.sciencedirect.com/science/article/abs/pii/S0168169922004100"
345
+ st.write("Link to the research paper: [link] (%s)" %url)
346
+
347
+ st.write("This app allows you to provide an image, and one of the most advanced Object Detection algorithms available will try to classify it for you. Upload your data to get started!")
348
+
349
+ with st.sidebar:
350
+ # st.image("logo.jpg", caption="")
351
+ uploaded_file = st.file_uploader("Choose an Image", type=["png","jpg","jpeg"])
352
+ return_types = st.multiselect("Select Return Type", ["Image", "Labels"], ["Image", "Labels"])
353
+
354
+ if not uploaded_file:
355
+ file_name = "sample.jpg"
356
+ st.write("Upload apple leaf image to detect diseases")
357
+ st.image("sample.jpg", caption='Sample Image',width=400)
358
+
359
+ else:
360
+ file_name = uploaded_file.name
361
+
362
+ #image = np.array(Image.open(image_file_buffer))
363
+ #Saving upload
364
+ file_details = {"filename":uploaded_file.name, "filetype":uploaded_file.type,"filesize":uploaded_file.size}
365
+ #st.write(file_details)
366
+ with open(file_name,"wb") as f:
367
+ f.write((uploaded_file).getbuffer())
368
+
369
+ img = Image.open(uploaded_file)
370
+ if img.format.lower() != "jpeg" or img.format.lower() !="jpg" :
371
+ # Convert the image to RGB format (JPEG-compatible) and save as a temporary JPEG file
372
+ img = img.convert("RGB")
373
+ temp_jpeg_file = "temp_image.jpg"
374
+ img.save(temp_jpeg_file, "JPEG")
375
+
376
+ img.close()
377
+
378
+ # Load the temporary JPEG file for processing
379
+ img = Image.open(temp_jpeg_file)
380
+
381
+
382
+
383
+ img = transforms.Resize((360,360))(img)
384
+ img = transforms.ToTensor()(img)
385
+ img = img.unsqueeze(0).to(device)
386
+ res=classify(model,img)
387
+
388
+
389
+ lb=labels[res[1]]
390
+ sc=res[0]
391
+ st.write(lb+" "+str(sc))
392
+ if(lb=="noleaf"):
393
+ st.write("Invalid image! Try Some other image")
394
+ elif(lb=="healthy"):
395
+ st.write("Looks healthy to me")
396
+ elif(lb=="demaged"):
397
+ st.write("No recognizable disease found")
398
+ else:
399
+ if(sc>7):
400
+ final_result = run(weights,file_name)
401
+ st.image(final_result, caption='Diseases Detected', width=400)
402
+
403
+ else:
404
+ st.write("No disease detected")
405
+
406
+ #final_result = run(weights,file_name)
407
+ #st.image(final_result, caption='Diseases Detected')
408
+ os.remove(file_name)
409
+ #Remove the temporary JPEG file after processing
410
+ os.remove(temp_jpeg_file)
411
+
412
+
413
+
414
+ if __name__ == "__main__":
415
+ opt = parse_opt()
416
+ model=NaturalSceneClassification()
417
+ model=torch.load("mobilenetv2-apple-10-class-pytorch.pth",map_location=device )
418
+ model.eval()
419
+
420
+ labels=[]
421
+ with open("labels.txt") as file:
422
+ for line in file:
423
+ line = line.strip() #or some other preprocessing
424
+ labels.append(line) #st
425
+ main(opt,model,labels)
426
+
427
+
428
+
429
+
430
+
431
+
432
+
appledd-yolov5s-800.pb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9fef9826dd03a8fe5a44740f97181a0765016650d143dd7e92c44c4f662d403
3
+ size 28324751
daisi.py ADDED
@@ -0,0 +1,432 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import os
3
+ import platform
4
+ import sys
5
+ import streamlit as st
6
+ import torch
7
+ import torch.backends.cudnn as cudnn
8
+ import numpy as np
9
+ from pathlib import Path
10
+ from PIL import Image
11
+
12
+ from torchvision import transforms, models
13
+
14
+
15
+
16
+ FILE = Path(__file__).resolve()
17
+ ROOT = FILE.parents[0] # YOLOv5 root directory
18
+ if str(ROOT) not in sys.path:
19
+ sys.path.append(str(ROOT)) # add ROOT to PATH
20
+ ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
21
+
22
+ from models.common import DetectMultiBackend
23
+ from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadStreams
24
+ from utils.general import (LOGGER, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
25
+ increment_path, non_max_suppression, print_args, scale_coords, strip_optimizer, xyxy2xywh)
26
+ from utils.plots import Annotator, colors, save_one_box
27
+ from utils.torch_utils import select_device, time_sync
28
+
29
+ weights="appledd-yolov5s-800.pb"
30
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
31
+
32
+
33
+ #### Class for classification model
34
+ import torch.nn as nn
35
+ import torch.nn.functional as F
36
+ class NaturalSceneClassification(nn.Module):
37
+ def __init__(self):
38
+ super().__init__()
39
+ self.network = torch.hub.load('pytorch/vision:v0.10.0', 'mobilenet_v2', pretrained=True)
40
+
41
+ self.network.fc = nn.Sequential(nn.Linear(2048, 512),
42
+ nn.ReLU(),
43
+ nn.Dropout(0.2),
44
+ nn.Linear(512, 10),
45
+ nn.Softmax(dim=1))
46
+
47
+
48
+ def forward(self, xb):
49
+ return self.network(xb)
50
+
51
+ def training_step(self, batch):
52
+ images, labels = batch
53
+ images, labels = images.to(device), labels.to(device)
54
+ out = self(images) # Generate predictions
55
+ loss = F.cross_entropy(out, labels) # Calculate loss
56
+ return loss
57
+
58
+ def validation_step(self, batch):
59
+ images, labels = batch
60
+ images, labels = images.to(device), labels.to(device)
61
+ out = self(images) # Generate predictions
62
+ loss = F.cross_entropy(out, labels) # Calculate loss
63
+ acc = accuracy(out, labels) # Calculate accuracy
64
+ return {'val_loss': loss.detach(), 'val_acc': acc}
65
+
66
+ def validation_epoch_end(self, outputs):
67
+ batch_losses = [x['val_loss'] for x in outputs]
68
+ epoch_loss = torch.stack(batch_losses).mean() # Combine losses
69
+ batch_accs = [x['val_acc'] for x in outputs]
70
+ epoch_acc = torch.stack(batch_accs).mean() # Combine accuracies
71
+ return {'val_loss': epoch_loss.item(), 'val_acc': epoch_acc.item()}
72
+
73
+ def epoch_end(self, epoch, result):
74
+ print("Epoch [{}], train_loss: {:.4f}, val_loss: {:.4f}, val_acc: {:.4f}".format(
75
+ epoch, result['train_loss'], result['val_loss'], result['val_acc']))
76
+
77
+
78
+
79
+
80
+ def increase_contrast(image):
81
+ if isinstance(image, Image.Image):
82
+ # Convert the PIL image to a numpy array
83
+ image = np.array(image)
84
+
85
+ if not isinstance(image, np.ndarray):
86
+ raise ValueError("Input must be a valid numpy array")
87
+
88
+ # Convert the image to grayscale if it's in color
89
+ if len(image.shape) == 3:
90
+ image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
91
+
92
+ # Calculate min and max values
93
+ min_val = image.min()
94
+ max_val = image.max()
95
+
96
+ if min_val == max_val:
97
+ return image # Avoid division by zero
98
+
99
+ # Apply contrast stretching
100
+ contrast_stretched = cv2.convertScaleAbs(image, alpha=255.0 / (max_val - min_val), beta=-min_val)
101
+
102
+ return contrast_stretched
103
+
104
+ def reduce_noise(image, kernel_size=(3, 3)):
105
+ # Apply Gaussian blur to reduce noise
106
+ blurred = cv2.GaussianBlur(image, kernel_size, 0)
107
+
108
+ return blurred
109
+ @torch.no_grad()
110
+ def run(
111
+ weights=ROOT / 'yolov5s.pt', # model.pt path(s)
112
+ source=ROOT / 'data/images', # file/dir/URL/glob, 0 for webcam
113
+ data=ROOT / 'data.yaml', # dataset.yaml path
114
+ imgsz=(640, 640), # inference size (height, width)
115
+ conf_thres=0.25, # confidence threshold
116
+ iou_thres=0.45, # NMS IOU threshold
117
+ max_det=1000, # maximum detections per image
118
+ device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
119
+ view_img=False, # show results
120
+ save_txt=False, # save results to *.txt
121
+ save_conf=False, # save confidences in --save-txt labels
122
+ save_crop=False, # save cropped prediction boxes
123
+ nosave=False, # do not save images/videos
124
+ classes=None, # filter by class: --class 0, or --class 0 2 3
125
+ agnostic_nms=False, # class-agnostic NMS
126
+ augment=False, # augmented inference
127
+ visualize=False, # visualize features
128
+ update=False, # update all models
129
+ project=ROOT / 'runs/detect', # save results to project/name
130
+ name='exp', # save results to project/name
131
+ exist_ok=True, # existing project/name ok, do not increment
132
+ line_thickness=2, # bounding box thickness (pixels)
133
+ hide_labels=False, # hide labels
134
+ hide_conf=False, # hide confidences
135
+ half=False, # use FP16 half-precision inference
136
+ dnn=False, # use OpenCV DNN for ONNX inference
137
+
138
+ upl_image: np.ndarray=None,
139
+ #return_type: list=["Image", "Labels"]
140
+ ):
141
+
142
+ source = str(source)
143
+ save_img = not nosave and not source.endswith('.txt') # save inference images
144
+ is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
145
+ is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
146
+ webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
147
+ if is_url and is_file:
148
+ source = check_file(source) # download
149
+
150
+ # Directories
151
+ save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
152
+ (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
153
+
154
+ # Load model
155
+ device = select_device(device)
156
+ model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
157
+ stride, names, pt = model.stride, model.names, model.pt
158
+ imgsz = check_img_size(imgsz, s=stride) # check image size
159
+
160
+ # Dataloader
161
+ if webcam:
162
+ view_img = check_imshow()
163
+ cudnn.benchmark = True # set True to speed up constant image size inference
164
+ dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
165
+ bs = len(dataset) # batch_size
166
+ else:
167
+ dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
168
+ bs = 1 # batch_size
169
+ vid_path, vid_writer = [None] * bs, [None] * bs
170
+
171
+ # Run inference
172
+ model.warmup(imgsz=(1 if pt else bs, 3, *imgsz)) # warmup
173
+ seen, windows, dt = 0, [], [0.0, 0.0, 0.0]
174
+ for path, im, im0s, vid_cap, s in dataset:
175
+ t1 = time_sync()
176
+ #im=upl_image
177
+ im = torch.from_numpy(im).to(device)
178
+ im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
179
+ im /= 255 # 0 - 255 to 0.0 - 1.0
180
+ if len(im.shape) == 3:
181
+ im = im[None] # expand for batch dim
182
+ t2 = time_sync()
183
+ dt[0] += t2 - t1
184
+ # Contrast enhancement
185
+ # im = increase_contrast(im)
186
+
187
+ # # Noise reduction
188
+ # im = reduce_noise(im)
189
+ # Inference
190
+ visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
191
+ pred = model(im, augment=augment, visualize=visualize)
192
+ t3 = time_sync()
193
+ dt[1] += t3 - t2
194
+
195
+ # NMS
196
+ pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
197
+ dt[2] += time_sync() - t3
198
+
199
+ # Second-stage classifier (optional)
200
+ # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
201
+
202
+ # Process predictions
203
+ for i, det in enumerate(pred): # per image
204
+ seen += 1
205
+ if webcam: # batch_size >= 1
206
+ p, im0, frame = path[i], im0s[i].copy(), dataset.count
207
+ s += f'{i}: '
208
+ else:
209
+ p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
210
+
211
+ p = Path(p) # to Path
212
+ save_path = str(save_dir / p.name) # im.jpg
213
+ txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt
214
+ s += '%gx%g ' % im.shape[2:] # print string
215
+ gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
216
+ imc = im0.copy() if save_crop else im0 # for save_crop
217
+ annotator = Annotator(im0, line_width=line_thickness, example=str(names))
218
+ if len(det):
219
+ # Rescale boxes from img_size to im0 size
220
+ det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()
221
+
222
+ # Print results
223
+ for c in det[:, -1].unique():
224
+ n = (det[:, -1] == c).sum() # detections per class
225
+ s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
226
+
227
+ # Write results
228
+ for *xyxy, conf, cls in reversed(det):
229
+ if save_txt: # Write to file
230
+ xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
231
+ line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
232
+ with open(f'{txt_path}.txt', 'a') as f:
233
+ f.write(('%g ' * len(line)).rstrip() % line + '\n')
234
+
235
+ if save_img or save_crop or view_img: # Add bbox to image
236
+ c = int(cls) # integer class
237
+ label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
238
+ annotator.box_label(xyxy, label, color=colors(c, True))
239
+ if save_crop:
240
+ save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
241
+
242
+ # Stream results
243
+ im0 = annotator.result()
244
+ if view_img:
245
+ if platform.system() == 'Linux' and p not in windows:
246
+ windows.append(p)
247
+ cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
248
+ cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
249
+ cv2.imshow(str(p), im0)
250
+ cv2.waitKey(1) # 1 millisecond
251
+
252
+ # Save results (image with detections)
253
+ if save_img:
254
+ if dataset.mode == 'image':
255
+ #cv2.imwrite(save_path, im0)
256
+ print("Save")
257
+ else: # 'video' or 'stream'
258
+ if vid_path[i] != save_path: # new video
259
+ vid_path[i] = save_path
260
+ if isinstance(vid_writer[i], cv2.VideoWriter):
261
+ vid_writer[i].release() # release previous video writer
262
+ if vid_cap: # video
263
+ fps = vid_cap.get(cv2.CAP_PROP_FPS)
264
+ w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
265
+ h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
266
+ else: # stream
267
+ fps, w, h = 30, im0.shape[1], im0.shape[0]
268
+ save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
269
+ vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
270
+ vid_writer[i].write(im0)
271
+
272
+ # Print time (inference-only)
273
+ LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)')
274
+
275
+ # Print results
276
+ t = tuple(x / seen * 1E3 for x in dt) # speeds per image
277
+ LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
278
+ if save_txt or save_img:
279
+ s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
280
+ LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
281
+ if update:
282
+ strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
283
+ im0 = cv2.cvtColor(im0, cv2.COLOR_BGR2RGB)
284
+ return im0
285
+
286
+
287
+ def parse_opt():
288
+ parser = argparse.ArgumentParser()
289
+ parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path(s)')
290
+ parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob, 0 for webcam')
291
+ parser.add_argument('--data', type=str, default=ROOT / 'data.yaml', help='(optional) dataset.yaml path')
292
+ parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[800], help='inference size h,w')
293
+ parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
294
+ parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
295
+ parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
296
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
297
+ parser.add_argument('--view-img', action='store_true', help='show results')
298
+ parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
299
+ parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
300
+ parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
301
+ parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
302
+ parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
303
+ parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
304
+ parser.add_argument('--augment', action='store_true', help='augmented inference')
305
+ parser.add_argument('--visualize', action='store_true', help='visualize features')
306
+ parser.add_argument('--update', action='store_true', help='update all models')
307
+ parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')
308
+ parser.add_argument('--name', default='exp', help='save results to project/name')
309
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
310
+ parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
311
+ parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
312
+ parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
313
+ parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
314
+ parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
315
+ opt = parser.parse_args()
316
+ opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
317
+ print_args(vars(opt))
318
+ return opt
319
+
320
+ def classify(model,img):
321
+ img = img.to(device)
322
+ prediction = model(img)
323
+ sc, preds = torch.max(prediction, dim = 1)
324
+ return sc[0].item(),preds[0].item()
325
+
326
+
327
+ def main(opt,model,labels):
328
+ #check_requirements(exclude=('tensorboard', 'thop'))
329
+ #run(**vars(opt))
330
+ st.image("logo.jpg", caption="")
331
+ st.title("#Welcome to Deep Diagnosis")
332
+ # st.write("By: Dr. Asif Iqbal Khan")
333
+ st.markdown(
334
+ """
335
+ This app allows you to detect different apple diseases from leaf images.
336
+ 1) Scab
337
+ 2) Alternaria
338
+ 3) MLB
339
+ 4) Mossaic
340
+ 5) Powdery Mildew
341
+ 6) Necrosis
342
+ """
343
+ )
344
+ url="https://www.sciencedirect.com/science/article/abs/pii/S0168169922004100"
345
+ st.write("Link to the research paper: [link] (%s)" %url)
346
+
347
+ st.write("This app allows you to provide an image, and one of the most advanced Object Detection algorithms available will try to classify it for you. Upload your data to get started!")
348
+
349
+ with st.sidebar:
350
+ # st.image("logo.jpg", caption="")
351
+ uploaded_file = st.file_uploader("Choose an Image", type=["png","jpg","jpeg"])
352
+ return_types = st.multiselect("Select Return Type", ["Image", "Labels"], ["Image", "Labels"])
353
+
354
+ if not uploaded_file:
355
+ file_name = "sample.jpg"
356
+ st.write("Upload apple leaf image to detect diseases")
357
+ st.image("sample.jpg", caption='Sample Image',width=400)
358
+
359
+ else:
360
+ file_name = uploaded_file.name
361
+
362
+ #image = np.array(Image.open(image_file_buffer))
363
+ #Saving upload
364
+ file_details = {"filename":uploaded_file.name, "filetype":uploaded_file.type,"filesize":uploaded_file.size}
365
+ #st.write(file_details)
366
+ with open(file_name,"wb") as f:
367
+ f.write((uploaded_file).getbuffer())
368
+
369
+ img = Image.open(uploaded_file)
370
+ if img.format.lower() != "jpeg" or img.format.lower() !="jpg" :
371
+ # Convert the image to RGB format (JPEG-compatible) and save as a temporary JPEG file
372
+ img = img.convert("RGB")
373
+ temp_jpeg_file = "temp_image.jpg"
374
+ img.save(temp_jpeg_file, "JPEG")
375
+
376
+ img.close()
377
+
378
+ # Load the temporary JPEG file for processing
379
+ img = Image.open(temp_jpeg_file)
380
+
381
+
382
+
383
+ img = transforms.Resize((360,360))(img)
384
+ img = transforms.ToTensor()(img)
385
+ img = img.unsqueeze(0).to(device)
386
+ res=classify(model,img)
387
+
388
+
389
+ lb=labels[res[1]]
390
+ sc=res[0]
391
+ st.write(lb+" "+str(sc))
392
+ if(lb=="noleaf"):
393
+ st.write("Invalid image! Try Some other image")
394
+ elif(lb=="healthy"):
395
+ st.write("Looks healthy to me")
396
+ elif(lb=="demaged"):
397
+ st.write("No recognizable disease found")
398
+ else:
399
+ if(sc>7):
400
+ final_result = run(weights,file_name)
401
+ st.image(final_result, caption='Diseases Detected', width=400)
402
+
403
+ else:
404
+ st.write("No disease detected")
405
+
406
+ #final_result = run(weights,file_name)
407
+ #st.image(final_result, caption='Diseases Detected')
408
+ os.remove(file_name)
409
+ #Remove the temporary JPEG file after processing
410
+ os.remove(temp_jpeg_file)
411
+
412
+
413
+
414
+ if __name__ == "__main__":
415
+ opt = parse_opt()
416
+ model=NaturalSceneClassification()
417
+ model=torch.load("mobilenetv2-apple-10-class-pytorch.pth",map_location=device )
418
+ model.eval()
419
+
420
+ labels=[]
421
+ with open("labels.txt") as file:
422
+ for line in file:
423
+ line = line.strip() #or some other preprocessing
424
+ labels.append(line) #st
425
+ main(opt,model,labels)
426
+
427
+
428
+
429
+
430
+
431
+
432
+
data.yaml ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ train: ../apple/train/images
2
+ val: ../apple/valid/images
3
+
4
+ nc: 7
5
+ names: ['alternaria', 'insect', 'mlb', 'mossaic', 'necrosis', 'pwm', 'scab']
detect.py ADDED
@@ -0,0 +1,257 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ """
3
+ Run inference on images, videos, directories, streams, etc.
4
+
5
+ Usage - sources:
6
+ $ python path/to/detect.py --weights yolov5s.pt --source 0 # webcam
7
+ img.jpg # image
8
+ vid.mp4 # video
9
+ path/ # directory
10
+ path/*.jpg # glob
11
+ 'https://youtu.be/Zgi9g1ksQHc' # YouTube
12
+ 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
13
+
14
+ Usage - formats:
15
+ $ python path/to/detect.py --weights yolov5s.pt # PyTorch
16
+ yolov5s.torchscript # TorchScript
17
+ yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
18
+ yolov5s.xml # OpenVINO
19
+ yolov5s.engine # TensorRT
20
+ yolov5s.mlmodel # CoreML (macOS-only)
21
+ yolov5s_saved_model # TensorFlow SavedModel
22
+ yolov5s.pb # TensorFlow GraphDef
23
+ yolov5s.tflite # TensorFlow Lite
24
+ yolov5s_edgetpu.tflite # TensorFlow Edge TPU
25
+ """
26
+
27
+ import argparse
28
+ import os
29
+ import platform
30
+ import sys
31
+ from pathlib import Path
32
+
33
+ import torch
34
+ import torch.backends.cudnn as cudnn
35
+
36
+ FILE = Path(__file__).resolve()
37
+ ROOT = FILE.parents[0] # YOLOv5 root directory
38
+ if str(ROOT) not in sys.path:
39
+ sys.path.append(str(ROOT)) # add ROOT to PATH
40
+ ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
41
+
42
+ from models.common import DetectMultiBackend
43
+ from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadStreams
44
+ from utils.general import (LOGGER, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
45
+ increment_path, non_max_suppression, print_args, scale_coords, strip_optimizer, xyxy2xywh)
46
+ from utils.plots import Annotator, colors, save_one_box
47
+ from utils.torch_utils import select_device, time_sync
48
+
49
+
50
+ @torch.no_grad()
51
+ def run(
52
+ weights=ROOT / 'yolov5s.pt', # model.pt path(s)
53
+ source=ROOT / 'data/images', # file/dir/URL/glob, 0 for webcam
54
+ data=ROOT / 'data/coco128.yaml', # dataset.yaml path
55
+ imgsz=(640, 640), # inference size (height, width)
56
+ conf_thres=0.25, # confidence threshold
57
+ iou_thres=0.45, # NMS IOU threshold
58
+ max_det=1000, # maximum detections per image
59
+ device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
60
+ view_img=False, # show results
61
+ save_txt=False, # save results to *.txt
62
+ save_conf=False, # save confidences in --save-txt labels
63
+ save_crop=False, # save cropped prediction boxes
64
+ nosave=False, # do not save images/videos
65
+ classes=None, # filter by class: --class 0, or --class 0 2 3
66
+ agnostic_nms=False, # class-agnostic NMS
67
+ augment=False, # augmented inference
68
+ visualize=False, # visualize features
69
+ update=False, # update all models
70
+ project=ROOT / 'runs/detect', # save results to project/name
71
+ name='exp', # save results to project/name
72
+ exist_ok=False, # existing project/name ok, do not increment
73
+ line_thickness=3, # bounding box thickness (pixels)
74
+ hide_labels=False, # hide labels
75
+ hide_conf=False, # hide confidences
76
+ half=False, # use FP16 half-precision inference
77
+ dnn=False, # use OpenCV DNN for ONNX inference
78
+ ):
79
+ source = str(source)
80
+ save_img = not nosave and not source.endswith('.txt') # save inference images
81
+ is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
82
+ is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
83
+ webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
84
+ if is_url and is_file:
85
+ source = check_file(source) # download
86
+
87
+ # Directories
88
+ save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
89
+ (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
90
+
91
+ # Load model
92
+ device = select_device(device)
93
+ model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
94
+ stride, names, pt = model.stride, model.names, model.pt
95
+ imgsz = check_img_size(imgsz, s=stride) # check image size
96
+
97
+ # Dataloader
98
+ if webcam:
99
+ view_img = check_imshow()
100
+ cudnn.benchmark = True # set True to speed up constant image size inference
101
+ dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
102
+ bs = len(dataset) # batch_size
103
+ else:
104
+ dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
105
+ bs = 1 # batch_size
106
+ vid_path, vid_writer = [None] * bs, [None] * bs
107
+
108
+ # Run inference
109
+ model.warmup(imgsz=(1 if pt else bs, 3, *imgsz)) # warmup
110
+ seen, windows, dt = 0, [], [0.0, 0.0, 0.0]
111
+ for path, im, im0s, vid_cap, s in dataset:
112
+ t1 = time_sync()
113
+ im = torch.from_numpy(im).to(device)
114
+ im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
115
+ im /= 255 # 0 - 255 to 0.0 - 1.0
116
+ if len(im.shape) == 3:
117
+ im = im[None] # expand for batch dim
118
+ t2 = time_sync()
119
+ dt[0] += t2 - t1
120
+
121
+ # Inference
122
+ visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
123
+ pred = model(im, augment=augment, visualize=visualize)
124
+ t3 = time_sync()
125
+ dt[1] += t3 - t2
126
+
127
+ # NMS
128
+ pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
129
+ dt[2] += time_sync() - t3
130
+
131
+ # Second-stage classifier (optional)
132
+ # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
133
+
134
+ # Process predictions
135
+ for i, det in enumerate(pred): # per image
136
+ seen += 1
137
+ if webcam: # batch_size >= 1
138
+ p, im0, frame = path[i], im0s[i].copy(), dataset.count
139
+ s += f'{i}: '
140
+ else:
141
+ p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
142
+
143
+ p = Path(p) # to Path
144
+ save_path = str(save_dir / p.name) # im.jpg
145
+ txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt
146
+ s += '%gx%g ' % im.shape[2:] # print string
147
+ gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
148
+ imc = im0.copy() if save_crop else im0 # for save_crop
149
+ annotator = Annotator(im0, line_width=line_thickness, example=str(names))
150
+ if len(det):
151
+ # Rescale boxes from img_size to im0 size
152
+ det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()
153
+
154
+ # Print results
155
+ for c in det[:, -1].unique():
156
+ n = (det[:, -1] == c).sum() # detections per class
157
+ s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
158
+
159
+ # Write results
160
+ for *xyxy, conf, cls in reversed(det):
161
+ if save_txt: # Write to file
162
+ xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
163
+ line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
164
+ with open(f'{txt_path}.txt', 'a') as f:
165
+ f.write(('%g ' * len(line)).rstrip() % line + '\n')
166
+
167
+ if save_img or save_crop or view_img: # Add bbox to image
168
+ c = int(cls) # integer class
169
+ label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
170
+ annotator.box_label(xyxy, label, color=colors(c, True))
171
+ if save_crop:
172
+ save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
173
+
174
+ # Stream results
175
+ im0 = annotator.result()
176
+ if view_img:
177
+ if platform.system() == 'Linux' and p not in windows:
178
+ windows.append(p)
179
+ cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
180
+ cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
181
+ cv2.imshow(str(p), im0)
182
+ cv2.waitKey(1) # 1 millisecond
183
+
184
+ # Save results (image with detections)
185
+ if save_img:
186
+ if dataset.mode == 'image':
187
+ cv2.imwrite(save_path, im0)
188
+ else: # 'video' or 'stream'
189
+ if vid_path[i] != save_path: # new video
190
+ vid_path[i] = save_path
191
+ if isinstance(vid_writer[i], cv2.VideoWriter):
192
+ vid_writer[i].release() # release previous video writer
193
+ if vid_cap: # video
194
+ fps = vid_cap.get(cv2.CAP_PROP_FPS)
195
+ w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
196
+ h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
197
+ else: # stream
198
+ fps, w, h = 30, im0.shape[1], im0.shape[0]
199
+ save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
200
+ vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
201
+ vid_writer[i].write(im0)
202
+
203
+ # Print time (inference-only)
204
+ LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)')
205
+
206
+ # Print results
207
+ t = tuple(x / seen * 1E3 for x in dt) # speeds per image
208
+ LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
209
+ if save_txt or save_img:
210
+ s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
211
+ LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
212
+ if update:
213
+ strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
214
+
215
+
216
+ def parse_opt():
217
+ parser = argparse.ArgumentParser()
218
+ parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path(s)')
219
+ parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob, 0 for webcam')
220
+ parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
221
+ parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
222
+ parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
223
+ parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
224
+ parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
225
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
226
+ parser.add_argument('--view-img', action='store_true', help='show results')
227
+ parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
228
+ parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
229
+ parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
230
+ parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
231
+ parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
232
+ parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
233
+ parser.add_argument('--augment', action='store_true', help='augmented inference')
234
+ parser.add_argument('--visualize', action='store_true', help='visualize features')
235
+ parser.add_argument('--update', action='store_true', help='update all models')
236
+ parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')
237
+ parser.add_argument('--name', default='exp', help='save results to project/name')
238
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
239
+ parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
240
+ parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
241
+ parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
242
+ parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
243
+ parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
244
+ opt = parser.parse_args()
245
+ opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
246
+ print_args(vars(opt))
247
+ return opt
248
+
249
+
250
+ def main(opt):
251
+ check_requirements(exclude=('tensorboard', 'thop'))
252
+ run(**vars(opt))
253
+
254
+
255
+ if __name__ == "__main__":
256
+ opt = parse_opt()
257
+ main(opt)
export.py ADDED
@@ -0,0 +1,618 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ """
3
+ Export a YOLOv5 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit
4
+
5
+ Format | `export.py --include` | Model
6
+ --- | --- | ---
7
+ PyTorch | - | yolov5s.pt
8
+ TorchScript | `torchscript` | yolov5s.torchscript
9
+ ONNX | `onnx` | yolov5s.onnx
10
+ OpenVINO | `openvino` | yolov5s_openvino_model/
11
+ TensorRT | `engine` | yolov5s.engine
12
+ CoreML | `coreml` | yolov5s.mlmodel
13
+ TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/
14
+ TensorFlow GraphDef | `pb` | yolov5s.pb
15
+ TensorFlow Lite | `tflite` | yolov5s.tflite
16
+ TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite
17
+ TensorFlow.js | `tfjs` | yolov5s_web_model/
18
+
19
+ Requirements:
20
+ $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
21
+ $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU
22
+
23
+ Usage:
24
+ $ python path/to/export.py --weights yolov5s.pt --include torchscript onnx openvino engine coreml tflite ...
25
+
26
+ Inference:
27
+ $ python path/to/detect.py --weights yolov5s.pt # PyTorch
28
+ yolov5s.torchscript # TorchScript
29
+ yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
30
+ yolov5s.xml # OpenVINO
31
+ yolov5s.engine # TensorRT
32
+ yolov5s.mlmodel # CoreML (macOS-only)
33
+ yolov5s_saved_model # TensorFlow SavedModel
34
+ yolov5s.pb # TensorFlow GraphDef
35
+ yolov5s.tflite # TensorFlow Lite
36
+ yolov5s_edgetpu.tflite # TensorFlow Edge TPU
37
+
38
+ TensorFlow.js:
39
+ $ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
40
+ $ npm install
41
+ $ ln -s ../../yolov5/yolov5s_web_model public/yolov5s_web_model
42
+ $ npm start
43
+ """
44
+
45
+ import argparse
46
+ import json
47
+ import os
48
+ import platform
49
+ import subprocess
50
+ import sys
51
+ import time
52
+ import warnings
53
+ from pathlib import Path
54
+
55
+ import pandas as pd
56
+ import torch
57
+ import yaml
58
+ from torch.utils.mobile_optimizer import optimize_for_mobile
59
+
60
+ FILE = Path(__file__).resolve()
61
+ ROOT = FILE.parents[0] # YOLOv5 root directory
62
+ if str(ROOT) not in sys.path:
63
+ sys.path.append(str(ROOT)) # add ROOT to PATH
64
+ if platform.system() != 'Windows':
65
+ ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
66
+
67
+ from models.experimental import attempt_load
68
+ from models.yolo import Detect
69
+ from utils.dataloaders import LoadImages
70
+ from utils.general import (LOGGER, check_dataset, check_img_size, check_requirements, check_version, check_yaml,
71
+ colorstr, file_size, print_args, url2file)
72
+ from utils.torch_utils import select_device
73
+
74
+
75
+ def export_formats():
76
+ # YOLOv5 export formats
77
+ x = [
78
+ ['PyTorch', '-', '.pt', True, True],
79
+ ['TorchScript', 'torchscript', '.torchscript', True, True],
80
+ ['ONNX', 'onnx', '.onnx', True, True],
81
+ ['OpenVINO', 'openvino', '_openvino_model', True, False],
82
+ ['TensorRT', 'engine', '.engine', False, True],
83
+ ['CoreML', 'coreml', '.mlmodel', True, False],
84
+ ['TensorFlow SavedModel', 'saved_model', '_saved_model', True, True],
85
+ ['TensorFlow GraphDef', 'pb', '.pb', True, True],
86
+ ['TensorFlow Lite', 'tflite', '.tflite', True, False],
87
+ ['TensorFlow Edge TPU', 'edgetpu', '_edgetpu.tflite', False, False],
88
+ ['TensorFlow.js', 'tfjs', '_web_model', False, False],]
89
+ return pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU'])
90
+
91
+
92
+ def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')):
93
+ # YOLOv5 TorchScript model export
94
+ try:
95
+ LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...')
96
+ f = file.with_suffix('.torchscript')
97
+
98
+ ts = torch.jit.trace(model, im, strict=False)
99
+ d = {"shape": im.shape, "stride": int(max(model.stride)), "names": model.names}
100
+ extra_files = {'config.txt': json.dumps(d)} # torch._C.ExtraFilesMap()
101
+ if optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html
102
+ optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files)
103
+ else:
104
+ ts.save(str(f), _extra_files=extra_files)
105
+
106
+ LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
107
+ return f
108
+ except Exception as e:
109
+ LOGGER.info(f'{prefix} export failure: {e}')
110
+
111
+
112
+ def export_onnx(model, im, file, opset, train, dynamic, simplify, prefix=colorstr('ONNX:')):
113
+ # YOLOv5 ONNX export
114
+ try:
115
+ check_requirements(('onnx',))
116
+ import onnx
117
+
118
+ LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...')
119
+ f = file.with_suffix('.onnx')
120
+
121
+ torch.onnx.export(
122
+ model.cpu() if dynamic else model, # --dynamic only compatible with cpu
123
+ im.cpu() if dynamic else im,
124
+ f,
125
+ verbose=False,
126
+ opset_version=opset,
127
+ training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,
128
+ do_constant_folding=not train,
129
+ input_names=['images'],
130
+ output_names=['output'],
131
+ dynamic_axes={
132
+ 'images': {
133
+ 0: 'batch',
134
+ 2: 'height',
135
+ 3: 'width'}, # shape(1,3,640,640)
136
+ 'output': {
137
+ 0: 'batch',
138
+ 1: 'anchors'} # shape(1,25200,85)
139
+ } if dynamic else None)
140
+
141
+ # Checks
142
+ model_onnx = onnx.load(f) # load onnx model
143
+ onnx.checker.check_model(model_onnx) # check onnx model
144
+
145
+ # Metadata
146
+ d = {'stride': int(max(model.stride)), 'names': model.names}
147
+ for k, v in d.items():
148
+ meta = model_onnx.metadata_props.add()
149
+ meta.key, meta.value = k, str(v)
150
+ onnx.save(model_onnx, f)
151
+
152
+ # Simplify
153
+ if simplify:
154
+ try:
155
+ cuda = torch.cuda.is_available()
156
+ check_requirements(('onnxruntime-gpu' if cuda else 'onnxruntime', 'onnx-simplifier>=0.4.1'))
157
+ import onnxsim
158
+
159
+ LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
160
+ model_onnx, check = onnxsim.simplify(model_onnx)
161
+ assert check, 'assert check failed'
162
+ onnx.save(model_onnx, f)
163
+ except Exception as e:
164
+ LOGGER.info(f'{prefix} simplifier failure: {e}')
165
+ LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
166
+ return f
167
+ except Exception as e:
168
+ LOGGER.info(f'{prefix} export failure: {e}')
169
+
170
+
171
+ def export_openvino(model, file, half, prefix=colorstr('OpenVINO:')):
172
+ # YOLOv5 OpenVINO export
173
+ try:
174
+ check_requirements(('openvino-dev',)) # requires openvino-dev: https://pypi.org/project/openvino-dev/
175
+ import openvino.inference_engine as ie
176
+
177
+ LOGGER.info(f'\n{prefix} starting export with openvino {ie.__version__}...')
178
+ f = str(file).replace('.pt', f'_openvino_model{os.sep}')
179
+
180
+ cmd = f"mo --input_model {file.with_suffix('.onnx')} --output_dir {f} --data_type {'FP16' if half else 'FP32'}"
181
+ subprocess.check_output(cmd.split()) # export
182
+ with open(Path(f) / file.with_suffix('.yaml').name, 'w') as g:
183
+ yaml.dump({'stride': int(max(model.stride)), 'names': model.names}, g) # add metadata.yaml
184
+
185
+ LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
186
+ return f
187
+ except Exception as e:
188
+ LOGGER.info(f'\n{prefix} export failure: {e}')
189
+
190
+
191
+ def export_coreml(model, im, file, int8, half, prefix=colorstr('CoreML:')):
192
+ # YOLOv5 CoreML export
193
+ try:
194
+ check_requirements(('coremltools',))
195
+ import coremltools as ct
196
+
197
+ LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...')
198
+ f = file.with_suffix('.mlmodel')
199
+
200
+ ts = torch.jit.trace(model, im, strict=False) # TorchScript model
201
+ ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=im.shape, scale=1 / 255, bias=[0, 0, 0])])
202
+ bits, mode = (8, 'kmeans_lut') if int8 else (16, 'linear') if half else (32, None)
203
+ if bits < 32:
204
+ if platform.system() == 'Darwin': # quantization only supported on macOS
205
+ with warnings.catch_warnings():
206
+ warnings.filterwarnings("ignore", category=DeprecationWarning) # suppress numpy==1.20 float warning
207
+ ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
208
+ else:
209
+ print(f'{prefix} quantization only supported on macOS, skipping...')
210
+ ct_model.save(f)
211
+
212
+ LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
213
+ return ct_model, f
214
+ except Exception as e:
215
+ LOGGER.info(f'\n{prefix} export failure: {e}')
216
+ return None, None
217
+
218
+
219
+ def export_engine(model, im, file, train, half, dynamic, simplify, workspace=4, verbose=False):
220
+ # YOLOv5 TensorRT export https://developer.nvidia.com/tensorrt
221
+ prefix = colorstr('TensorRT:')
222
+ try:
223
+ assert im.device.type != 'cpu', 'export running on CPU but must be on GPU, i.e. `python export.py --device 0`'
224
+ try:
225
+ import tensorrt as trt
226
+ except Exception:
227
+ if platform.system() == 'Linux':
228
+ check_requirements(('nvidia-tensorrt',), cmds=('-U --index-url https://pypi.ngc.nvidia.com',))
229
+ import tensorrt as trt
230
+
231
+ if trt.__version__[0] == '7': # TensorRT 7 handling https://github.com/ultralytics/yolov5/issues/6012
232
+ grid = model.model[-1].anchor_grid
233
+ model.model[-1].anchor_grid = [a[..., :1, :1, :] for a in grid]
234
+ export_onnx(model, im, file, 12, train, dynamic, simplify) # opset 12
235
+ model.model[-1].anchor_grid = grid
236
+ else: # TensorRT >= 8
237
+ check_version(trt.__version__, '8.0.0', hard=True) # require tensorrt>=8.0.0
238
+ export_onnx(model, im, file, 13, train, dynamic, simplify) # opset 13
239
+ onnx = file.with_suffix('.onnx')
240
+
241
+ LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...')
242
+ assert onnx.exists(), f'failed to export ONNX file: {onnx}'
243
+ f = file.with_suffix('.engine') # TensorRT engine file
244
+ logger = trt.Logger(trt.Logger.INFO)
245
+ if verbose:
246
+ logger.min_severity = trt.Logger.Severity.VERBOSE
247
+
248
+ builder = trt.Builder(logger)
249
+ config = builder.create_builder_config()
250
+ config.max_workspace_size = workspace * 1 << 30
251
+ # config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30) # fix TRT 8.4 deprecation notice
252
+
253
+ flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
254
+ network = builder.create_network(flag)
255
+ parser = trt.OnnxParser(network, logger)
256
+ if not parser.parse_from_file(str(onnx)):
257
+ raise RuntimeError(f'failed to load ONNX file: {onnx}')
258
+
259
+ inputs = [network.get_input(i) for i in range(network.num_inputs)]
260
+ outputs = [network.get_output(i) for i in range(network.num_outputs)]
261
+ LOGGER.info(f'{prefix} Network Description:')
262
+ for inp in inputs:
263
+ LOGGER.info(f'{prefix}\tinput "{inp.name}" with shape {inp.shape} and dtype {inp.dtype}')
264
+ for out in outputs:
265
+ LOGGER.info(f'{prefix}\toutput "{out.name}" with shape {out.shape} and dtype {out.dtype}')
266
+
267
+ if dynamic:
268
+ if im.shape[0] <= 1:
269
+ LOGGER.warning(f"{prefix}WARNING: --dynamic model requires maximum --batch-size argument")
270
+ profile = builder.create_optimization_profile()
271
+ for inp in inputs:
272
+ profile.set_shape(inp.name, (1, *im.shape[1:]), (max(1, im.shape[0] // 2), *im.shape[1:]), im.shape)
273
+ config.add_optimization_profile(profile)
274
+
275
+ LOGGER.info(f'{prefix} building FP{16 if builder.platform_has_fast_fp16 and half else 32} engine in {f}')
276
+ if builder.platform_has_fast_fp16 and half:
277
+ config.set_flag(trt.BuilderFlag.FP16)
278
+ with builder.build_engine(network, config) as engine, open(f, 'wb') as t:
279
+ t.write(engine.serialize())
280
+ LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
281
+ return f
282
+ except Exception as e:
283
+ LOGGER.info(f'\n{prefix} export failure: {e}')
284
+
285
+
286
+ def export_saved_model(model,
287
+ im,
288
+ file,
289
+ dynamic,
290
+ tf_nms=False,
291
+ agnostic_nms=False,
292
+ topk_per_class=100,
293
+ topk_all=100,
294
+ iou_thres=0.45,
295
+ conf_thres=0.25,
296
+ keras=False,
297
+ prefix=colorstr('TensorFlow SavedModel:')):
298
+ # YOLOv5 TensorFlow SavedModel export
299
+ try:
300
+ import tensorflow as tf
301
+ from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
302
+
303
+ from models.tf import TFDetect, TFModel
304
+
305
+ LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
306
+ f = str(file).replace('.pt', '_saved_model')
307
+ batch_size, ch, *imgsz = list(im.shape) # BCHW
308
+
309
+ tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
310
+ im = tf.zeros((batch_size, *imgsz, ch)) # BHWC order for TensorFlow
311
+ _ = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
312
+ inputs = tf.keras.Input(shape=(*imgsz, ch), batch_size=None if dynamic else batch_size)
313
+ outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
314
+ keras_model = tf.keras.Model(inputs=inputs, outputs=outputs)
315
+ keras_model.trainable = False
316
+ keras_model.summary()
317
+ if keras:
318
+ keras_model.save(f, save_format='tf')
319
+ else:
320
+ spec = tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)
321
+ m = tf.function(lambda x: keras_model(x)) # full model
322
+ m = m.get_concrete_function(spec)
323
+ frozen_func = convert_variables_to_constants_v2(m)
324
+ tfm = tf.Module()
325
+ tfm.__call__ = tf.function(lambda x: frozen_func(x)[:4] if tf_nms else frozen_func(x)[0], [spec])
326
+ tfm.__call__(im)
327
+ tf.saved_model.save(tfm,
328
+ f,
329
+ options=tf.saved_model.SaveOptions(experimental_custom_gradients=False)
330
+ if check_version(tf.__version__, '2.6') else tf.saved_model.SaveOptions())
331
+ LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
332
+ return keras_model, f
333
+ except Exception as e:
334
+ LOGGER.info(f'\n{prefix} export failure: {e}')
335
+ return None, None
336
+
337
+
338
+ def export_pb(keras_model, file, prefix=colorstr('TensorFlow GraphDef:')):
339
+ # YOLOv5 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow
340
+ try:
341
+ import tensorflow as tf
342
+ from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
343
+
344
+ LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
345
+ f = file.with_suffix('.pb')
346
+
347
+ m = tf.function(lambda x: keras_model(x)) # full model
348
+ m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
349
+ frozen_func = convert_variables_to_constants_v2(m)
350
+ frozen_func.graph.as_graph_def()
351
+ tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
352
+
353
+ LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
354
+ return f
355
+ except Exception as e:
356
+ LOGGER.info(f'\n{prefix} export failure: {e}')
357
+
358
+
359
+ def export_tflite(keras_model, im, file, int8, data, nms, agnostic_nms, prefix=colorstr('TensorFlow Lite:')):
360
+ # YOLOv5 TensorFlow Lite export
361
+ try:
362
+ import tensorflow as tf
363
+
364
+ LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
365
+ batch_size, ch, *imgsz = list(im.shape) # BCHW
366
+ f = str(file).replace('.pt', '-fp16.tflite')
367
+
368
+ converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
369
+ converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
370
+ converter.target_spec.supported_types = [tf.float16]
371
+ converter.optimizations = [tf.lite.Optimize.DEFAULT]
372
+ if int8:
373
+ from models.tf import representative_dataset_gen
374
+ dataset = LoadImages(check_dataset(check_yaml(data))['train'], img_size=imgsz, auto=False)
375
+ converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib=100)
376
+ converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
377
+ converter.target_spec.supported_types = []
378
+ converter.inference_input_type = tf.uint8 # or tf.int8
379
+ converter.inference_output_type = tf.uint8 # or tf.int8
380
+ converter.experimental_new_quantizer = True
381
+ f = str(file).replace('.pt', '-int8.tflite')
382
+ if nms or agnostic_nms:
383
+ converter.target_spec.supported_ops.append(tf.lite.OpsSet.SELECT_TF_OPS)
384
+
385
+ tflite_model = converter.convert()
386
+ open(f, "wb").write(tflite_model)
387
+ LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
388
+ return f
389
+ except Exception as e:
390
+ LOGGER.info(f'\n{prefix} export failure: {e}')
391
+
392
+
393
+ def export_edgetpu(file, prefix=colorstr('Edge TPU:')):
394
+ # YOLOv5 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/
395
+ try:
396
+ cmd = 'edgetpu_compiler --version'
397
+ help_url = 'https://coral.ai/docs/edgetpu/compiler/'
398
+ assert platform.system() == 'Linux', f'export only supported on Linux. See {help_url}'
399
+ if subprocess.run(f'{cmd} >/dev/null', shell=True).returncode != 0:
400
+ LOGGER.info(f'\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}')
401
+ sudo = subprocess.run('sudo --version >/dev/null', shell=True).returncode == 0 # sudo installed on system
402
+ for c in (
403
+ 'curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -',
404
+ 'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list',
405
+ 'sudo apt-get update', 'sudo apt-get install edgetpu-compiler'):
406
+ subprocess.run(c if sudo else c.replace('sudo ', ''), shell=True, check=True)
407
+ ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]
408
+
409
+ LOGGER.info(f'\n{prefix} starting export with Edge TPU compiler {ver}...')
410
+ f = str(file).replace('.pt', '-int8_edgetpu.tflite') # Edge TPU model
411
+ f_tfl = str(file).replace('.pt', '-int8.tflite') # TFLite model
412
+
413
+ cmd = f"edgetpu_compiler -s -d -k 10 --out_dir {file.parent} {f_tfl}"
414
+ subprocess.run(cmd.split(), check=True)
415
+
416
+ LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
417
+ return f
418
+ except Exception as e:
419
+ LOGGER.info(f'\n{prefix} export failure: {e}')
420
+
421
+
422
+ def export_tfjs(file, prefix=colorstr('TensorFlow.js:')):
423
+ # YOLOv5 TensorFlow.js export
424
+ try:
425
+ check_requirements(('tensorflowjs',))
426
+ import re
427
+
428
+ import tensorflowjs as tfjs
429
+
430
+ LOGGER.info(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...')
431
+ f = str(file).replace('.pt', '_web_model') # js dir
432
+ f_pb = file.with_suffix('.pb') # *.pb path
433
+ f_json = f'{f}/model.json' # *.json path
434
+
435
+ cmd = f'tensorflowjs_converter --input_format=tf_frozen_model ' \
436
+ f'--output_node_names=Identity,Identity_1,Identity_2,Identity_3 {f_pb} {f}'
437
+ subprocess.run(cmd.split())
438
+
439
+ with open(f_json) as j:
440
+ json = j.read()
441
+ with open(f_json, 'w') as j: # sort JSON Identity_* in ascending order
442
+ subst = re.sub(
443
+ r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, '
444
+ r'"Identity.?.?": {"name": "Identity.?.?"}, '
445
+ r'"Identity.?.?": {"name": "Identity.?.?"}, '
446
+ r'"Identity.?.?": {"name": "Identity.?.?"}}}', r'{"outputs": {"Identity": {"name": "Identity"}, '
447
+ r'"Identity_1": {"name": "Identity_1"}, '
448
+ r'"Identity_2": {"name": "Identity_2"}, '
449
+ r'"Identity_3": {"name": "Identity_3"}}}', json)
450
+ j.write(subst)
451
+
452
+ LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
453
+ return f
454
+ except Exception as e:
455
+ LOGGER.info(f'\n{prefix} export failure: {e}')
456
+
457
+
458
+ @torch.no_grad()
459
+ def run(
460
+ data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path'
461
+ weights=ROOT / 'yolov5s.pt', # weights path
462
+ imgsz=(640, 640), # image (height, width)
463
+ batch_size=1, # batch size
464
+ device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu
465
+ include=('torchscript', 'onnx'), # include formats
466
+ half=False, # FP16 half-precision export
467
+ inplace=False, # set YOLOv5 Detect() inplace=True
468
+ train=False, # model.train() mode
469
+ keras=False, # use Keras
470
+ optimize=False, # TorchScript: optimize for mobile
471
+ int8=False, # CoreML/TF INT8 quantization
472
+ dynamic=False, # ONNX/TF/TensorRT: dynamic axes
473
+ simplify=False, # ONNX: simplify model
474
+ opset=12, # ONNX: opset version
475
+ verbose=False, # TensorRT: verbose log
476
+ workspace=4, # TensorRT: workspace size (GB)
477
+ nms=False, # TF: add NMS to model
478
+ agnostic_nms=False, # TF: add agnostic NMS to model
479
+ topk_per_class=100, # TF.js NMS: topk per class to keep
480
+ topk_all=100, # TF.js NMS: topk for all classes to keep
481
+ iou_thres=0.45, # TF.js NMS: IoU threshold
482
+ conf_thres=0.25, # TF.js NMS: confidence threshold
483
+ ):
484
+ t = time.time()
485
+ include = [x.lower() for x in include] # to lowercase
486
+ fmts = tuple(export_formats()['Argument'][1:]) # --include arguments
487
+ flags = [x in include for x in fmts]
488
+ assert sum(flags) == len(include), f'ERROR: Invalid --include {include}, valid --include arguments are {fmts}'
489
+ jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs = flags # export booleans
490
+ file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights) # PyTorch weights
491
+
492
+ # Load PyTorch model
493
+ device = select_device(device)
494
+ if half:
495
+ assert device.type != 'cpu' or coreml, '--half only compatible with GPU export, i.e. use --device 0'
496
+ assert not dynamic, '--half not compatible with --dynamic, i.e. use either --half or --dynamic but not both'
497
+ model = attempt_load(weights, device=device, inplace=True, fuse=True) # load FP32 model
498
+ nc, names = model.nc, model.names # number of classes, class names
499
+
500
+ # Checks
501
+ imgsz *= 2 if len(imgsz) == 1 else 1 # expand
502
+ assert nc == len(names), f'Model class count {nc} != len(names) {len(names)}'
503
+ if optimize:
504
+ assert device.type == 'cpu', '--optimize not compatible with cuda devices, i.e. use --device cpu'
505
+
506
+ # Input
507
+ gs = int(max(model.stride)) # grid size (max stride)
508
+ imgsz = [check_img_size(x, gs) for x in imgsz] # verify img_size are gs-multiples
509
+ im = torch.zeros(batch_size, 3, *imgsz).to(device) # image size(1,3,320,192) BCHW iDetection
510
+
511
+ # Update model
512
+ model.train() if train else model.eval() # training mode = no Detect() layer grid construction
513
+ for k, m in model.named_modules():
514
+ if isinstance(m, Detect):
515
+ m.inplace = inplace
516
+ m.onnx_dynamic = dynamic
517
+ m.export = True
518
+
519
+ for _ in range(2):
520
+ y = model(im) # dry runs
521
+ if half and not coreml:
522
+ im, model = im.half(), model.half() # to FP16
523
+ shape = tuple(y[0].shape) # model output shape
524
+ LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)")
525
+
526
+ # Exports
527
+ f = [''] * 10 # exported filenames
528
+ warnings.filterwarnings(action='ignore', category=torch.jit.TracerWarning) # suppress TracerWarning
529
+ if jit:
530
+ f[0] = export_torchscript(model, im, file, optimize)
531
+ if engine: # TensorRT required before ONNX
532
+ f[1] = export_engine(model, im, file, train, half, dynamic, simplify, workspace, verbose)
533
+ if onnx or xml: # OpenVINO requires ONNX
534
+ f[2] = export_onnx(model, im, file, opset, train, dynamic, simplify)
535
+ if xml: # OpenVINO
536
+ f[3] = export_openvino(model, file, half)
537
+ if coreml:
538
+ _, f[4] = export_coreml(model, im, file, int8, half)
539
+
540
+ # TensorFlow Exports
541
+ if any((saved_model, pb, tflite, edgetpu, tfjs)):
542
+ if int8 or edgetpu: # TFLite --int8 bug https://github.com/ultralytics/yolov5/issues/5707
543
+ check_requirements(('flatbuffers==1.12',)) # required before `import tensorflow`
544
+ assert not tflite or not tfjs, 'TFLite and TF.js models must be exported separately, please pass only one type.'
545
+ model, f[5] = export_saved_model(model.cpu(),
546
+ im,
547
+ file,
548
+ dynamic,
549
+ tf_nms=nms or agnostic_nms or tfjs,
550
+ agnostic_nms=agnostic_nms or tfjs,
551
+ topk_per_class=topk_per_class,
552
+ topk_all=topk_all,
553
+ iou_thres=iou_thres,
554
+ conf_thres=conf_thres,
555
+ keras=keras)
556
+ if pb or tfjs: # pb prerequisite to tfjs
557
+ f[6] = export_pb(model, file)
558
+ if tflite or edgetpu:
559
+ f[7] = export_tflite(model, im, file, int8=int8 or edgetpu, data=data, nms=nms, agnostic_nms=agnostic_nms)
560
+ if edgetpu:
561
+ f[8] = export_edgetpu(file)
562
+ if tfjs:
563
+ f[9] = export_tfjs(file)
564
+
565
+ # Finish
566
+ f = [str(x) for x in f if x] # filter out '' and None
567
+ if any(f):
568
+ h = '--half' if half else '' # --half FP16 inference arg
569
+ LOGGER.info(f'\nExport complete ({time.time() - t:.2f}s)'
570
+ f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
571
+ f"\nDetect: python detect.py --weights {f[-1]} {h}"
572
+ f"\nValidate: python val.py --weights {f[-1]} {h}"
573
+ f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{f[-1]}')"
574
+ f"\nVisualize: https://netron.app")
575
+ return f # return list of exported files/dirs
576
+
577
+
578
+ def parse_opt():
579
+ parser = argparse.ArgumentParser()
580
+ parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
581
+ parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model.pt path(s)')
582
+ parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640, 640], help='image (h, w)')
583
+ parser.add_argument('--batch-size', type=int, default=1, help='batch size')
584
+ parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
585
+ parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
586
+ parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True')
587
+ parser.add_argument('--train', action='store_true', help='model.train() mode')
588
+ parser.add_argument('--keras', action='store_true', help='TF: use Keras')
589
+ parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile')
590
+ parser.add_argument('--int8', action='store_true', help='CoreML/TF INT8 quantization')
591
+ parser.add_argument('--dynamic', action='store_true', help='ONNX/TF/TensorRT: dynamic axes')
592
+ parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model')
593
+ parser.add_argument('--opset', type=int, default=12, help='ONNX: opset version')
594
+ parser.add_argument('--verbose', action='store_true', help='TensorRT: verbose log')
595
+ parser.add_argument('--workspace', type=int, default=4, help='TensorRT: workspace size (GB)')
596
+ parser.add_argument('--nms', action='store_true', help='TF: add NMS to model')
597
+ parser.add_argument('--agnostic-nms', action='store_true', help='TF: add agnostic NMS to model')
598
+ parser.add_argument('--topk-per-class', type=int, default=100, help='TF.js NMS: topk per class to keep')
599
+ parser.add_argument('--topk-all', type=int, default=100, help='TF.js NMS: topk for all classes to keep')
600
+ parser.add_argument('--iou-thres', type=float, default=0.45, help='TF.js NMS: IoU threshold')
601
+ parser.add_argument('--conf-thres', type=float, default=0.25, help='TF.js NMS: confidence threshold')
602
+ parser.add_argument('--include',
603
+ nargs='+',
604
+ default=['torchscript', 'onnx'],
605
+ help='torchscript, onnx, openvino, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs')
606
+ opt = parser.parse_args()
607
+ print_args(vars(opt))
608
+ return opt
609
+
610
+
611
+ def main(opt):
612
+ for opt.weights in (opt.weights if isinstance(opt.weights, list) else [opt.weights]):
613
+ run(**vars(opt))
614
+
615
+
616
+ if __name__ == "__main__":
617
+ opt = parse_opt()
618
+ main(opt)
hubconf.py ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ """
3
+ PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5/
4
+
5
+ Usage:
6
+ import torch
7
+ model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
8
+ model = torch.hub.load('ultralytics/yolov5:master', 'custom', 'path/to/yolov5s.onnx') # file from branch
9
+ """
10
+
11
+ import torch
12
+
13
+
14
+ def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
15
+ """Creates or loads a YOLOv5 model
16
+
17
+ Arguments:
18
+ name (str): model name 'yolov5s' or path 'path/to/best.pt'
19
+ pretrained (bool): load pretrained weights into the model
20
+ channels (int): number of input channels
21
+ classes (int): number of model classes
22
+ autoshape (bool): apply YOLOv5 .autoshape() wrapper to model
23
+ verbose (bool): print all information to screen
24
+ device (str, torch.device, None): device to use for model parameters
25
+
26
+ Returns:
27
+ YOLOv5 model
28
+ """
29
+ from pathlib import Path
30
+
31
+ from models.common import AutoShape, DetectMultiBackend
32
+ from models.experimental import attempt_load
33
+ from models.yolo import Model
34
+ from utils.downloads import attempt_download
35
+ from utils.general import LOGGER, check_requirements, intersect_dicts, logging
36
+ from utils.torch_utils import select_device
37
+
38
+ if not verbose:
39
+ LOGGER.setLevel(logging.WARNING)
40
+ check_requirements(exclude=('tensorboard', 'thop', 'opencv-python'))
41
+ name = Path(name)
42
+ path = name.with_suffix('.pt') if name.suffix == '' and not name.is_dir() else name # checkpoint path
43
+ try:
44
+ device = select_device(device)
45
+ if pretrained and channels == 3 and classes == 80:
46
+ try:
47
+ model = DetectMultiBackend(path, device=device, fuse=autoshape) # detection model
48
+ if autoshape:
49
+ model = AutoShape(model) # for file/URI/PIL/cv2/np inputs and NMS
50
+ except Exception:
51
+ model = attempt_load(path, device=device, fuse=False) # arbitrary model
52
+ else:
53
+ cfg = list((Path(__file__).parent / 'models').rglob(f'{path.stem}.yaml'))[0] # model.yaml path
54
+ model = Model(cfg, channels, classes) # create model
55
+ if pretrained:
56
+ ckpt = torch.load(attempt_download(path), map_location=device) # load
57
+ csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
58
+ csd = intersect_dicts(csd, model.state_dict(), exclude=['anchors']) # intersect
59
+ model.load_state_dict(csd, strict=False) # load
60
+ if len(ckpt['model'].names) == classes:
61
+ model.names = ckpt['model'].names # set class names attribute
62
+ if not verbose:
63
+ LOGGER.setLevel(logging.INFO) # reset to default
64
+ return model.to(device)
65
+
66
+ except Exception as e:
67
+ help_url = 'https://github.com/ultralytics/yolov5/issues/36'
68
+ s = f'{e}. Cache may be out of date, try `force_reload=True` or see {help_url} for help.'
69
+ raise Exception(s) from e
70
+
71
+
72
+ def custom(path='path/to/model.pt', autoshape=True, _verbose=True, device=None):
73
+ # YOLOv5 custom or local model
74
+ return _create(path, autoshape=autoshape, verbose=_verbose, device=device)
75
+
76
+
77
+ def yolov5n(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
78
+ # YOLOv5-nano model https://github.com/ultralytics/yolov5
79
+ return _create('yolov5n', pretrained, channels, classes, autoshape, _verbose, device)
80
+
81
+
82
+ def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
83
+ # YOLOv5-small model https://github.com/ultralytics/yolov5
84
+ return _create('yolov5s', pretrained, channels, classes, autoshape, _verbose, device)
85
+
86
+
87
+ def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
88
+ # YOLOv5-medium model https://github.com/ultralytics/yolov5
89
+ return _create('yolov5m', pretrained, channels, classes, autoshape, _verbose, device)
90
+
91
+
92
+ def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
93
+ # YOLOv5-large model https://github.com/ultralytics/yolov5
94
+ return _create('yolov5l', pretrained, channels, classes, autoshape, _verbose, device)
95
+
96
+
97
+ def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
98
+ # YOLOv5-xlarge model https://github.com/ultralytics/yolov5
99
+ return _create('yolov5x', pretrained, channels, classes, autoshape, _verbose, device)
100
+
101
+
102
+ def yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
103
+ # YOLOv5-nano-P6 model https://github.com/ultralytics/yolov5
104
+ return _create('yolov5n6', pretrained, channels, classes, autoshape, _verbose, device)
105
+
106
+
107
+ def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
108
+ # YOLOv5-small-P6 model https://github.com/ultralytics/yolov5
109
+ return _create('yolov5s6', pretrained, channels, classes, autoshape, _verbose, device)
110
+
111
+
112
+ def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
113
+ # YOLOv5-medium-P6 model https://github.com/ultralytics/yolov5
114
+ return _create('yolov5m6', pretrained, channels, classes, autoshape, _verbose, device)
115
+
116
+
117
+ def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
118
+ # YOLOv5-large-P6 model https://github.com/ultralytics/yolov5
119
+ return _create('yolov5l6', pretrained, channels, classes, autoshape, _verbose, device)
120
+
121
+
122
+ def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
123
+ # YOLOv5-xlarge-P6 model https://github.com/ultralytics/yolov5
124
+ return _create('yolov5x6', pretrained, channels, classes, autoshape, _verbose, device)
125
+
126
+
127
+ if __name__ == '__main__':
128
+ import argparse
129
+ from pathlib import Path
130
+
131
+ import numpy as np
132
+ from PIL import Image
133
+
134
+ from utils.general import cv2, print_args
135
+
136
+ # Argparser
137
+ parser = argparse.ArgumentParser()
138
+ parser.add_argument('--model', type=str, default='yolov5s', help='model name')
139
+ opt = parser.parse_args()
140
+ print_args(vars(opt))
141
+
142
+ # Model
143
+ model = _create(name=opt.model, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True)
144
+ # model = custom(path='path/to/model.pt') # custom
145
+
146
+ # Images
147
+ imgs = [
148
+ 'data/images/zidane.jpg', # filename
149
+ Path('data/images/zidane.jpg'), # Path
150
+ 'https://ultralytics.com/images/zidane.jpg', # URI
151
+ cv2.imread('data/images/bus.jpg')[:, :, ::-1], # OpenCV
152
+ Image.open('data/images/bus.jpg'), # PIL
153
+ np.zeros((320, 640, 3))] # numpy
154
+
155
+ # Inference
156
+ results = model(imgs, size=320) # batched inference
157
+
158
+ # Results
159
+ results.print()
160
+ results.save()
labels.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ alternaria
2
+ demaged
3
+ healthy
4
+ insect
5
+ mlb
6
+ mossaic
7
+ multiple
8
+ necrosis
9
+ noleaf
10
+ powdery-mildew
11
+ scab
logo.jpg ADDED
mobilenetv2-apple-10-class-pytorch.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2f870dfd9a345418d055f3e5380b61c046d0dbbd13a5c40f2d0e9efb35ecbac
3
+ size 18510789
packages.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ libgl1
requirements.txt ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ opencv_python
2
+ torchvision
3
+ torch
4
+ numpy
5
+ thop
6
+ streamlit # for app
7
+ pycocotools
8
+ tqdm
9
+ addict
10
+ Pillow
11
+ PyYAML
12
+ tools
13
+ seaborn
14
+ pandas
15
+ tensorflow
sample.jpg ADDED
setup.cfg ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Project-wide configuration file, can be used for package metadata and other toll configurations
2
+ # Example usage: global configuration for PEP8 (via flake8) setting or default pytest arguments
3
+ # Local usage: pip install pre-commit, pre-commit run --all-files
4
+
5
+ [metadata]
6
+ license_file = LICENSE
7
+ description_file = README.md
8
+
9
+
10
+ [tool:pytest]
11
+ norecursedirs =
12
+ .git
13
+ dist
14
+ build
15
+ addopts =
16
+ --doctest-modules
17
+ --durations=25
18
+ --color=yes
19
+
20
+
21
+ [flake8]
22
+ max-line-length = 120
23
+ exclude = .tox,*.egg,build,temp
24
+ select = E,W,F
25
+ doctests = True
26
+ verbose = 2
27
+ # https://pep8.readthedocs.io/en/latest/intro.html#error-codes
28
+ format = pylint
29
+ # see: https://www.flake8rules.com/
30
+ ignore =
31
+ E731 # Do not assign a lambda expression, use a def
32
+ F405 # name may be undefined, or defined from star imports: module
33
+ E402 # module level import not at top of file
34
+ F401 # module imported but unused
35
+ W504 # line break after binary operator
36
+ E127 # continuation line over-indented for visual indent
37
+ W504 # line break after binary operator
38
+ E231 # missing whitespace after ‘,’, ‘;’, or ‘:’
39
+ E501 # line too long
40
+ F403 # ‘from module import *’ used; unable to detect undefined names
41
+
42
+
43
+ [isort]
44
+ # https://pycqa.github.io/isort/docs/configuration/options.html
45
+ line_length = 120
46
+ # see: https://pycqa.github.io/isort/docs/configuration/multi_line_output_modes.html
47
+ multi_line_output = 0
48
+
49
+
50
+ [yapf]
51
+ based_on_style = pep8
52
+ spaces_before_comment = 2
53
+ COLUMN_LIMIT = 120
54
+ COALESCE_BRACKETS = True
55
+ SPACES_AROUND_POWER_OPERATOR = True
56
+ SPACE_BETWEEN_ENDING_COMMA_AND_CLOSING_BRACKET = False
57
+ SPLIT_BEFORE_CLOSING_BRACKET = False
58
+ SPLIT_BEFORE_FIRST_ARGUMENT = False
59
+ # EACH_DICT_ENTRY_ON_SEPARATE_LINE = False
temp_image.jpg ADDED
test.jpg ADDED
test1.jpg ADDED
test2.jpg ADDED
test3.jpg ADDED
train.py ADDED
@@ -0,0 +1,633 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ """
3
+ Train a YOLOv5 model on a custom dataset.
4
+
5
+ Models and datasets download automatically from the latest YOLOv5 release.
6
+ Models: https://github.com/ultralytics/yolov5/tree/master/models
7
+ Datasets: https://github.com/ultralytics/yolov5/tree/master/data
8
+ Tutorial: https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data
9
+
10
+ Usage:
11
+ $ python path/to/train.py --data coco128.yaml --weights yolov5s.pt --img 640 # from pretrained (RECOMMENDED)
12
+ $ python path/to/train.py --data coco128.yaml --weights '' --cfg yolov5s.yaml --img 640 # from scratch
13
+ """
14
+
15
+ import argparse
16
+ import math
17
+ import os
18
+ import random
19
+ import sys
20
+ import time
21
+ from copy import deepcopy
22
+ from datetime import datetime
23
+ from pathlib import Path
24
+
25
+ import numpy as np
26
+ import torch
27
+ import torch.distributed as dist
28
+ import torch.nn as nn
29
+ import yaml
30
+ from torch.optim import lr_scheduler
31
+ from tqdm import tqdm
32
+
33
+ FILE = Path(__file__).resolve()
34
+ ROOT = FILE.parents[0] # YOLOv5 root directory
35
+ if str(ROOT) not in sys.path:
36
+ sys.path.append(str(ROOT)) # add ROOT to PATH
37
+ ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
38
+
39
+ import val # for end-of-epoch mAP
40
+ from models.experimental import attempt_load
41
+ from models.yolo import Model
42
+ from utils.autoanchor import check_anchors
43
+ from utils.autobatch import check_train_batch_size
44
+ from utils.callbacks import Callbacks
45
+ from utils.dataloaders import create_dataloader
46
+ from utils.downloads import attempt_download, is_url
47
+ from utils.general import (LOGGER, check_amp, check_dataset, check_file, check_git_status, check_img_size,
48
+ check_requirements, check_suffix, check_yaml, colorstr, get_latest_run, increment_path,
49
+ init_seeds, intersect_dicts, labels_to_class_weights, labels_to_image_weights, methods,
50
+ one_cycle, print_args, print_mutation, strip_optimizer)
51
+ from utils.loggers import Loggers
52
+ from utils.loggers.wandb.wandb_utils import check_wandb_resume
53
+ from utils.loss import ComputeLoss
54
+ from utils.metrics import fitness
55
+ from utils.plots import plot_evolve, plot_labels
56
+ from utils.torch_utils import (EarlyStopping, ModelEMA, de_parallel, select_device, smart_DDP, smart_optimizer,
57
+ smart_resume, torch_distributed_zero_first)
58
+
59
+ LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
60
+ RANK = int(os.getenv('RANK', -1))
61
+ WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
62
+
63
+
64
+ def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictionary
65
+ save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = \
66
+ Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
67
+ opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze
68
+ callbacks.run('on_pretrain_routine_start')
69
+
70
+ # Directories
71
+ w = save_dir / 'weights' # weights dir
72
+ (w.parent if evolve else w).mkdir(parents=True, exist_ok=True) # make dir
73
+ last, best = w / 'last.pt', w / 'best.pt'
74
+
75
+ # Hyperparameters
76
+ if isinstance(hyp, str):
77
+ with open(hyp, errors='ignore') as f:
78
+ hyp = yaml.safe_load(f) # load hyps dict
79
+ LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
80
+ opt.hyp = hyp.copy() # for saving hyps to checkpoints
81
+
82
+ # Save run settings
83
+ if not evolve:
84
+ with open(save_dir / 'hyp.yaml', 'w') as f:
85
+ yaml.safe_dump(hyp, f, sort_keys=False)
86
+ with open(save_dir / 'opt.yaml', 'w') as f:
87
+ yaml.safe_dump(vars(opt), f, sort_keys=False)
88
+
89
+ # Loggers
90
+ data_dict = None
91
+ if RANK in {-1, 0}:
92
+ loggers = Loggers(save_dir, weights, opt, hyp, LOGGER) # loggers instance
93
+ if loggers.clearml:
94
+ data_dict = loggers.clearml.data_dict # None if no ClearML dataset or filled in by ClearML
95
+ if loggers.wandb:
96
+ data_dict = loggers.wandb.data_dict
97
+ if resume:
98
+ weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, opt.batch_size
99
+
100
+ # Register actions
101
+ for k in methods(loggers):
102
+ callbacks.register_action(k, callback=getattr(loggers, k))
103
+
104
+ # Config
105
+ plots = not evolve and not opt.noplots # create plots
106
+ cuda = device.type != 'cpu'
107
+ init_seeds(opt.seed + 1 + RANK, deterministic=True)
108
+ with torch_distributed_zero_first(LOCAL_RANK):
109
+ data_dict = data_dict or check_dataset(data) # check if None
110
+ train_path, val_path = data_dict['train'], data_dict['val']
111
+ nc = 1 if single_cls else int(data_dict['nc']) # number of classes
112
+ names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
113
+ assert len(names) == nc, f'{len(names)} names found for nc={nc} dataset in {data}' # check
114
+ is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt') # COCO dataset
115
+
116
+ # Model
117
+ check_suffix(weights, '.pt') # check weights
118
+ pretrained = weights.endswith('.pt')
119
+ if pretrained:
120
+ with torch_distributed_zero_first(LOCAL_RANK):
121
+ weights = attempt_download(weights) # download if not found locally
122
+ ckpt = torch.load(weights, map_location='cpu') # load checkpoint to CPU to avoid CUDA memory leak
123
+ model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
124
+ exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys
125
+ csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
126
+ csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect
127
+ model.load_state_dict(csd, strict=False) # load
128
+ LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') # report
129
+ else:
130
+ model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
131
+ amp = check_amp(model) # check AMP
132
+
133
+ # Freeze
134
+ freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))] # layers to freeze
135
+ for k, v in model.named_parameters():
136
+ v.requires_grad = True # train all layers
137
+ # v.register_hook(lambda x: torch.nan_to_num(x)) # NaN to 0 (commented for erratic training results)
138
+ if any(x in k for x in freeze):
139
+ LOGGER.info(f'freezing {k}')
140
+ v.requires_grad = False
141
+
142
+ # Image size
143
+ gs = max(int(model.stride.max()), 32) # grid size (max stride)
144
+ imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple
145
+
146
+ # Batch size
147
+ if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size
148
+ batch_size = check_train_batch_size(model, imgsz, amp)
149
+ loggers.on_params_update({"batch_size": batch_size})
150
+
151
+ # Optimizer
152
+ nbs = 64 # nominal batch size
153
+ accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing
154
+ hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay
155
+ optimizer = smart_optimizer(model, opt.optimizer, hyp['lr0'], hyp['momentum'], hyp['weight_decay'])
156
+
157
+ # Scheduler
158
+ if opt.cos_lr:
159
+ lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
160
+ else:
161
+ lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
162
+ scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs)
163
+
164
+ # EMA
165
+ ema = ModelEMA(model) if RANK in {-1, 0} else None
166
+
167
+ # Resume
168
+ best_fitness, start_epoch = 0.0, 0
169
+ if pretrained:
170
+ best_fitness, start_epoch, epochs = smart_resume(ckpt, optimizer, ema, weights, epochs, resume)
171
+ del ckpt, csd
172
+
173
+ # DP mode
174
+ if cuda and RANK == -1 and torch.cuda.device_count() > 1:
175
+ LOGGER.warning('WARNING: DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n'
176
+ 'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.')
177
+ model = torch.nn.DataParallel(model)
178
+
179
+ # SyncBatchNorm
180
+ if opt.sync_bn and cuda and RANK != -1:
181
+ model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
182
+ LOGGER.info('Using SyncBatchNorm()')
183
+
184
+ # Trainloader
185
+ train_loader, dataset = create_dataloader(train_path,
186
+ imgsz,
187
+ batch_size // WORLD_SIZE,
188
+ gs,
189
+ single_cls,
190
+ hyp=hyp,
191
+ augment=True,
192
+ cache=None if opt.cache == 'val' else opt.cache,
193
+ rect=opt.rect,
194
+ rank=LOCAL_RANK,
195
+ workers=workers,
196
+ image_weights=opt.image_weights,
197
+ quad=opt.quad,
198
+ prefix=colorstr('train: '),
199
+ shuffle=True)
200
+ labels = np.concatenate(dataset.labels, 0)
201
+ mlc = int(labels[:, 0].max()) # max label class
202
+ assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'
203
+
204
+ # Process 0
205
+ if RANK in {-1, 0}:
206
+ val_loader = create_dataloader(val_path,
207
+ imgsz,
208
+ batch_size // WORLD_SIZE * 2,
209
+ gs,
210
+ single_cls,
211
+ hyp=hyp,
212
+ cache=None if noval else opt.cache,
213
+ rect=True,
214
+ rank=-1,
215
+ workers=workers * 2,
216
+ pad=0.5,
217
+ prefix=colorstr('val: '))[0]
218
+
219
+ if not resume:
220
+ if plots:
221
+ plot_labels(labels, names, save_dir)
222
+
223
+ # Anchors
224
+ if not opt.noautoanchor:
225
+ check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
226
+ model.half().float() # pre-reduce anchor precision
227
+
228
+ callbacks.run('on_pretrain_routine_end')
229
+
230
+ # DDP mode
231
+ if cuda and RANK != -1:
232
+ model = smart_DDP(model)
233
+
234
+ # Model attributes
235
+ nl = de_parallel(model).model[-1].nl # number of detection layers (to scale hyps)
236
+ hyp['box'] *= 3 / nl # scale to layers
237
+ hyp['cls'] *= nc / 80 * 3 / nl # scale to classes and layers
238
+ hyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl # scale to image size and layers
239
+ hyp['label_smoothing'] = opt.label_smoothing
240
+ model.nc = nc # attach number of classes to model
241
+ model.hyp = hyp # attach hyperparameters to model
242
+ model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
243
+ model.names = names
244
+
245
+ # Start training
246
+ t0 = time.time()
247
+ nb = len(train_loader) # number of batches
248
+ nw = max(round(hyp['warmup_epochs'] * nb), 100) # number of warmup iterations, max(3 epochs, 100 iterations)
249
+ # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
250
+ last_opt_step = -1
251
+ maps = np.zeros(nc) # mAP per class
252
+ results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
253
+ scheduler.last_epoch = start_epoch - 1 # do not move
254
+ scaler = torch.cuda.amp.GradScaler(enabled=amp)
255
+ stopper, stop = EarlyStopping(patience=opt.patience), False
256
+ compute_loss = ComputeLoss(model) # init loss class
257
+ callbacks.run('on_train_start')
258
+ LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
259
+ f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'
260
+ f"Logging results to {colorstr('bold', save_dir)}\n"
261
+ f'Starting training for {epochs} epochs...')
262
+ for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
263
+ callbacks.run('on_train_epoch_start')
264
+ model.train()
265
+
266
+ # Update image weights (optional, single-GPU only)
267
+ if opt.image_weights:
268
+ cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
269
+ iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
270
+ dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
271
+
272
+ # Update mosaic border (optional)
273
+ # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
274
+ # dataset.mosaic_border = [b - imgsz, -b] # height, width borders
275
+
276
+ mloss = torch.zeros(3, device=device) # mean losses
277
+ if RANK != -1:
278
+ train_loader.sampler.set_epoch(epoch)
279
+ pbar = enumerate(train_loader)
280
+ LOGGER.info(('\n' + '%10s' * 7) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'labels', 'img_size'))
281
+ if RANK in {-1, 0}:
282
+ pbar = tqdm(pbar, total=nb, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar
283
+ optimizer.zero_grad()
284
+ for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
285
+ callbacks.run('on_train_batch_start')
286
+ ni = i + nb * epoch # number integrated batches (since train start)
287
+ imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255 to 0.0-1.0
288
+
289
+ # Warmup
290
+ if ni <= nw:
291
+ xi = [0, nw] # x interp
292
+ # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
293
+ accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
294
+ for j, x in enumerate(optimizer.param_groups):
295
+ # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
296
+ x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * lf(epoch)])
297
+ if 'momentum' in x:
298
+ x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
299
+
300
+ # Multi-scale
301
+ if opt.multi_scale:
302
+ sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
303
+ sf = sz / max(imgs.shape[2:]) # scale factor
304
+ if sf != 1:
305
+ ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
306
+ imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
307
+
308
+ # Forward
309
+ with torch.cuda.amp.autocast(amp):
310
+ pred = model(imgs) # forward
311
+ loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size
312
+ if RANK != -1:
313
+ loss *= WORLD_SIZE # gradient averaged between devices in DDP mode
314
+ if opt.quad:
315
+ loss *= 4.
316
+
317
+ # Backward
318
+ scaler.scale(loss).backward()
319
+
320
+ # Optimize - https://pytorch.org/docs/master/notes/amp_examples.html
321
+ if ni - last_opt_step >= accumulate:
322
+ scaler.unscale_(optimizer) # unscale gradients
323
+ torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) # clip gradients
324
+ scaler.step(optimizer) # optimizer.step
325
+ scaler.update()
326
+ optimizer.zero_grad()
327
+ if ema:
328
+ ema.update(model)
329
+ last_opt_step = ni
330
+
331
+ # Log
332
+ if RANK in {-1, 0}:
333
+ mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
334
+ mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB)
335
+ pbar.set_description(('%10s' * 2 + '%10.4g' * 5) %
336
+ (f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]))
337
+ callbacks.run('on_train_batch_end', ni, model, imgs, targets, paths, plots)
338
+ if callbacks.stop_training:
339
+ return
340
+ # end batch ------------------------------------------------------------------------------------------------
341
+
342
+ # Scheduler
343
+ lr = [x['lr'] for x in optimizer.param_groups] # for loggers
344
+ scheduler.step()
345
+
346
+ if RANK in {-1, 0}:
347
+ # mAP
348
+ callbacks.run('on_train_epoch_end', epoch=epoch)
349
+ ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])
350
+ final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
351
+ if not noval or final_epoch: # Calculate mAP
352
+ results, maps, _ = val.run(data_dict,
353
+ batch_size=batch_size // WORLD_SIZE * 2,
354
+ imgsz=imgsz,
355
+ half=amp,
356
+ model=ema.ema,
357
+ single_cls=single_cls,
358
+ dataloader=val_loader,
359
+ save_dir=save_dir,
360
+ plots=False,
361
+ callbacks=callbacks,
362
+ compute_loss=compute_loss)
363
+
364
+ # Update best mAP
365
+ fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
366
+ stop = stopper(epoch=epoch, fitness=fi) # early stop check
367
+ if fi > best_fitness:
368
+ best_fitness = fi
369
+ log_vals = list(mloss) + list(results) + lr
370
+ callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi)
371
+
372
+ # Save model
373
+ if (not nosave) or (final_epoch and not evolve): # if save
374
+ ckpt = {
375
+ 'epoch': epoch,
376
+ 'best_fitness': best_fitness,
377
+ 'model': deepcopy(de_parallel(model)).half(),
378
+ 'ema': deepcopy(ema.ema).half(),
379
+ 'updates': ema.updates,
380
+ 'optimizer': optimizer.state_dict(),
381
+ 'wandb_id': loggers.wandb.wandb_run.id if loggers.wandb else None,
382
+ 'opt': vars(opt),
383
+ 'date': datetime.now().isoformat()}
384
+
385
+ # Save last, best and delete
386
+ torch.save(ckpt, last)
387
+ if best_fitness == fi:
388
+ torch.save(ckpt, best)
389
+ if opt.save_period > 0 and epoch % opt.save_period == 0:
390
+ torch.save(ckpt, w / f'epoch{epoch}.pt')
391
+ del ckpt
392
+ callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi)
393
+
394
+ # EarlyStopping
395
+ if RANK != -1: # if DDP training
396
+ broadcast_list = [stop if RANK == 0 else None]
397
+ dist.broadcast_object_list(broadcast_list, 0) # broadcast 'stop' to all ranks
398
+ if RANK != 0:
399
+ stop = broadcast_list[0]
400
+ if stop:
401
+ break # must break all DDP ranks
402
+
403
+ # end epoch ----------------------------------------------------------------------------------------------------
404
+ # end training -----------------------------------------------------------------------------------------------------
405
+ if RANK in {-1, 0}:
406
+ LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')
407
+ for f in last, best:
408
+ if f.exists():
409
+ strip_optimizer(f) # strip optimizers
410
+ if f is best:
411
+ LOGGER.info(f'\nValidating {f}...')
412
+ results, _, _ = val.run(
413
+ data_dict,
414
+ batch_size=batch_size // WORLD_SIZE * 2,
415
+ imgsz=imgsz,
416
+ model=attempt_load(f, device).half(),
417
+ iou_thres=0.65 if is_coco else 0.60, # best pycocotools results at 0.65
418
+ single_cls=single_cls,
419
+ dataloader=val_loader,
420
+ save_dir=save_dir,
421
+ save_json=is_coco,
422
+ verbose=True,
423
+ plots=plots,
424
+ callbacks=callbacks,
425
+ compute_loss=compute_loss) # val best model with plots
426
+ if is_coco:
427
+ callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi)
428
+
429
+ callbacks.run('on_train_end', last, best, plots, epoch, results)
430
+
431
+ torch.cuda.empty_cache()
432
+ return results
433
+
434
+
435
+ def parse_opt(known=False):
436
+ parser = argparse.ArgumentParser()
437
+ parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='initial weights path')
438
+ parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
439
+ parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
440
+ parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path')
441
+ parser.add_argument('--epochs', type=int, default=300)
442
+ parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch')
443
+ parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
444
+ parser.add_argument('--rect', action='store_true', help='rectangular training')
445
+ parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
446
+ parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
447
+ parser.add_argument('--noval', action='store_true', help='only validate final epoch')
448
+ parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor')
449
+ parser.add_argument('--noplots', action='store_true', help='save no plot files')
450
+ parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
451
+ parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
452
+ parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"')
453
+ parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
454
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
455
+ parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
456
+ parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
457
+ parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer')
458
+ parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
459
+ parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
460
+ parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name')
461
+ parser.add_argument('--name', default='exp', help='save to project/name')
462
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
463
+ parser.add_argument('--quad', action='store_true', help='quad dataloader')
464
+ parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler')
465
+ parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
466
+ parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
467
+ parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2')
468
+ parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
469
+ parser.add_argument('--seed', type=int, default=0, help='Global training seed')
470
+ parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify')
471
+
472
+ # Weights & Biases arguments
473
+ parser.add_argument('--entity', default=None, help='W&B: Entity')
474
+ parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, help='W&B: Upload data, "val" option')
475
+ parser.add_argument('--bbox_interval', type=int, default=-1, help='W&B: Set bounding-box image logging interval')
476
+ parser.add_argument('--artifact_alias', type=str, default='latest', help='W&B: Version of dataset artifact to use')
477
+
478
+ return parser.parse_known_args()[0] if known else parser.parse_args()
479
+
480
+
481
+ def main(opt, callbacks=Callbacks()):
482
+ # Checks
483
+ if RANK in {-1, 0}:
484
+ print_args(vars(opt))
485
+ check_git_status()
486
+ check_requirements(exclude=['thop'])
487
+
488
+ # Resume
489
+ if opt.resume and not (check_wandb_resume(opt) or opt.evolve): # resume from specified or most recent last.pt
490
+ last = Path(check_file(opt.resume) if isinstance(opt.resume, str) else get_latest_run())
491
+ opt_yaml = last.parent.parent / 'opt.yaml' # train options yaml
492
+ opt_data = opt.data # original dataset
493
+ if opt_yaml.is_file():
494
+ with open(opt_yaml, errors='ignore') as f:
495
+ d = yaml.safe_load(f)
496
+ else:
497
+ d = torch.load(last, map_location='cpu')['opt']
498
+ opt = argparse.Namespace(**d) # replace
499
+ opt.cfg, opt.weights, opt.resume = '', str(last), True # reinstate
500
+ if is_url(opt_data):
501
+ opt.data = check_file(opt_data) # avoid HUB resume auth timeout
502
+ else:
503
+ opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \
504
+ check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project) # checks
505
+ assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
506
+ if opt.evolve:
507
+ if opt.project == str(ROOT / 'runs/train'): # if default project name, rename to runs/evolve
508
+ opt.project = str(ROOT / 'runs/evolve')
509
+ opt.exist_ok, opt.resume = opt.resume, False # pass resume to exist_ok and disable resume
510
+ if opt.name == 'cfg':
511
+ opt.name = Path(opt.cfg).stem # use model.yaml as name
512
+ opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))
513
+
514
+ # DDP mode
515
+ device = select_device(opt.device, batch_size=opt.batch_size)
516
+ if LOCAL_RANK != -1:
517
+ msg = 'is not compatible with YOLOv5 Multi-GPU DDP training'
518
+ assert not opt.image_weights, f'--image-weights {msg}'
519
+ assert not opt.evolve, f'--evolve {msg}'
520
+ assert opt.batch_size != -1, f'AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size'
521
+ assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE'
522
+ assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
523
+ torch.cuda.set_device(LOCAL_RANK)
524
+ device = torch.device('cuda', LOCAL_RANK)
525
+ dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")
526
+
527
+ # Train
528
+ if not opt.evolve:
529
+ train(opt.hyp, opt, device, callbacks)
530
+
531
+ # Evolve hyperparameters (optional)
532
+ else:
533
+ # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
534
+ meta = {
535
+ 'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
536
+ 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
537
+ 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
538
+ 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
539
+ 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
540
+ 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
541
+ 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
542
+ 'box': (1, 0.02, 0.2), # box loss gain
543
+ 'cls': (1, 0.2, 4.0), # cls loss gain
544
+ 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
545
+ 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
546
+ 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
547
+ 'iou_t': (0, 0.1, 0.7), # IoU training threshold
548
+ 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
549
+ 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
550
+ 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
551
+ 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
552
+ 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
553
+ 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
554
+ 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
555
+ 'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
556
+ 'scale': (1, 0.0, 0.9), # image scale (+/- gain)
557
+ 'shear': (1, 0.0, 10.0), # image shear (+/- deg)
558
+ 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
559
+ 'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
560
+ 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
561
+ 'mosaic': (1, 0.0, 1.0), # image mixup (probability)
562
+ 'mixup': (1, 0.0, 1.0), # image mixup (probability)
563
+ 'copy_paste': (1, 0.0, 1.0)} # segment copy-paste (probability)
564
+
565
+ with open(opt.hyp, errors='ignore') as f:
566
+ hyp = yaml.safe_load(f) # load hyps dict
567
+ if 'anchors' not in hyp: # anchors commented in hyp.yaml
568
+ hyp['anchors'] = 3
569
+ if opt.noautoanchor:
570
+ del hyp['anchors'], meta['anchors']
571
+ opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) # only val/save final epoch
572
+ # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
573
+ evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv'
574
+ if opt.bucket:
575
+ os.system(f'gsutil cp gs://{opt.bucket}/evolve.csv {evolve_csv}') # download evolve.csv if exists
576
+
577
+ for _ in range(opt.evolve): # generations to evolve
578
+ if evolve_csv.exists(): # if evolve.csv exists: select best hyps and mutate
579
+ # Select parent(s)
580
+ parent = 'single' # parent selection method: 'single' or 'weighted'
581
+ x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1)
582
+ n = min(5, len(x)) # number of previous results to consider
583
+ x = x[np.argsort(-fitness(x))][:n] # top n mutations
584
+ w = fitness(x) - fitness(x).min() + 1E-6 # weights (sum > 0)
585
+ if parent == 'single' or len(x) == 1:
586
+ # x = x[random.randint(0, n - 1)] # random selection
587
+ x = x[random.choices(range(n), weights=w)[0]] # weighted selection
588
+ elif parent == 'weighted':
589
+ x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
590
+
591
+ # Mutate
592
+ mp, s = 0.8, 0.2 # mutation probability, sigma
593
+ npr = np.random
594
+ npr.seed(int(time.time()))
595
+ g = np.array([meta[k][0] for k in hyp.keys()]) # gains 0-1
596
+ ng = len(meta)
597
+ v = np.ones(ng)
598
+ while all(v == 1): # mutate until a change occurs (prevent duplicates)
599
+ v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
600
+ for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
601
+ hyp[k] = float(x[i + 7] * v[i]) # mutate
602
+
603
+ # Constrain to limits
604
+ for k, v in meta.items():
605
+ hyp[k] = max(hyp[k], v[1]) # lower limit
606
+ hyp[k] = min(hyp[k], v[2]) # upper limit
607
+ hyp[k] = round(hyp[k], 5) # significant digits
608
+
609
+ # Train mutation
610
+ results = train(hyp.copy(), opt, device, callbacks)
611
+ callbacks = Callbacks()
612
+ # Write mutation results
613
+ print_mutation(results, hyp.copy(), save_dir, opt.bucket)
614
+
615
+ # Plot results
616
+ plot_evolve(evolve_csv)
617
+ LOGGER.info(f'Hyperparameter evolution finished {opt.evolve} generations\n'
618
+ f"Results saved to {colorstr('bold', save_dir)}\n"
619
+ f'Usage example: $ python train.py --hyp {evolve_yaml}')
620
+
621
+
622
+ def run(**kwargs):
623
+ # Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt')
624
+ opt = parse_opt(True)
625
+ for k, v in kwargs.items():
626
+ setattr(opt, k, v)
627
+ main(opt)
628
+ return opt
629
+
630
+
631
+ if __name__ == "__main__":
632
+ opt = parse_opt()
633
+ main(opt)
unnamed.jpg ADDED
val.py ADDED
@@ -0,0 +1,396 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
+ """
3
+ Validate a trained YOLOv5 model accuracy on a custom dataset
4
+
5
+ Usage:
6
+ $ python path/to/val.py --weights yolov5s.pt --data coco128.yaml --img 640
7
+
8
+ Usage - formats:
9
+ $ python path/to/val.py --weights yolov5s.pt # PyTorch
10
+ yolov5s.torchscript # TorchScript
11
+ yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
12
+ yolov5s.xml # OpenVINO
13
+ yolov5s.engine # TensorRT
14
+ yolov5s.mlmodel # CoreML (macOS-only)
15
+ yolov5s_saved_model # TensorFlow SavedModel
16
+ yolov5s.pb # TensorFlow GraphDef
17
+ yolov5s.tflite # TensorFlow Lite
18
+ yolov5s_edgetpu.tflite # TensorFlow Edge TPU
19
+ """
20
+
21
+ import argparse
22
+ import json
23
+ import os
24
+ import sys
25
+ from pathlib import Path
26
+
27
+ import numpy as np
28
+ import torch
29
+ from tqdm import tqdm
30
+
31
+ FILE = Path(__file__).resolve()
32
+ ROOT = FILE.parents[0] # YOLOv5 root directory
33
+ if str(ROOT) not in sys.path:
34
+ sys.path.append(str(ROOT)) # add ROOT to PATH
35
+ ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
36
+
37
+ from models.common import DetectMultiBackend
38
+ from utils.callbacks import Callbacks
39
+ from utils.dataloaders import create_dataloader
40
+ from utils.general import (LOGGER, check_dataset, check_img_size, check_requirements, check_yaml,
41
+ coco80_to_coco91_class, colorstr, increment_path, non_max_suppression, print_args,
42
+ scale_coords, xywh2xyxy, xyxy2xywh)
43
+ from utils.metrics import ConfusionMatrix, ap_per_class, box_iou
44
+ from utils.plots import output_to_target, plot_images, plot_val_study
45
+ from utils.torch_utils import select_device, time_sync
46
+
47
+
48
+ def save_one_txt(predn, save_conf, shape, file):
49
+ # Save one txt result
50
+ gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh
51
+ for *xyxy, conf, cls in predn.tolist():
52
+ xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
53
+ line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
54
+ with open(file, 'a') as f:
55
+ f.write(('%g ' * len(line)).rstrip() % line + '\n')
56
+
57
+
58
+ def save_one_json(predn, jdict, path, class_map):
59
+ # Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
60
+ image_id = int(path.stem) if path.stem.isnumeric() else path.stem
61
+ box = xyxy2xywh(predn[:, :4]) # xywh
62
+ box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
63
+ for p, b in zip(predn.tolist(), box.tolist()):
64
+ jdict.append({
65
+ 'image_id': image_id,
66
+ 'category_id': class_map[int(p[5])],
67
+ 'bbox': [round(x, 3) for x in b],
68
+ 'score': round(p[4], 5)})
69
+
70
+
71
+ def process_batch(detections, labels, iouv):
72
+ """
73
+ Return correct predictions matrix. Both sets of boxes are in (x1, y1, x2, y2) format.
74
+ Arguments:
75
+ detections (Array[N, 6]), x1, y1, x2, y2, conf, class
76
+ labels (Array[M, 5]), class, x1, y1, x2, y2
77
+ Returns:
78
+ correct (Array[N, 10]), for 10 IoU levels
79
+ """
80
+ correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool)
81
+ iou = box_iou(labels[:, 1:], detections[:, :4])
82
+ correct_class = labels[:, 0:1] == detections[:, 5]
83
+ for i in range(len(iouv)):
84
+ x = torch.where((iou >= iouv[i]) & correct_class) # IoU > threshold and classes match
85
+ if x[0].shape[0]:
86
+ matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detect, iou]
87
+ if x[0].shape[0] > 1:
88
+ matches = matches[matches[:, 2].argsort()[::-1]]
89
+ matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
90
+ # matches = matches[matches[:, 2].argsort()[::-1]]
91
+ matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
92
+ correct[matches[:, 1].astype(int), i] = True
93
+ return torch.tensor(correct, dtype=torch.bool, device=iouv.device)
94
+
95
+
96
+ @torch.no_grad()
97
+ def run(
98
+ data,
99
+ weights=None, # model.pt path(s)
100
+ batch_size=32, # batch size
101
+ imgsz=640, # inference size (pixels)
102
+ conf_thres=0.001, # confidence threshold
103
+ iou_thres=0.6, # NMS IoU threshold
104
+ task='val', # train, val, test, speed or study
105
+ device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
106
+ workers=8, # max dataloader workers (per RANK in DDP mode)
107
+ single_cls=False, # treat as single-class dataset
108
+ augment=False, # augmented inference
109
+ verbose=False, # verbose output
110
+ save_txt=False, # save results to *.txt
111
+ save_hybrid=False, # save label+prediction hybrid results to *.txt
112
+ save_conf=False, # save confidences in --save-txt labels
113
+ save_json=False, # save a COCO-JSON results file
114
+ project=ROOT / 'runs/val', # save to project/name
115
+ name='exp', # save to project/name
116
+ exist_ok=False, # existing project/name ok, do not increment
117
+ half=True, # use FP16 half-precision inference
118
+ dnn=False, # use OpenCV DNN for ONNX inference
119
+ model=None,
120
+ dataloader=None,
121
+ save_dir=Path(''),
122
+ plots=True,
123
+ callbacks=Callbacks(),
124
+ compute_loss=None,
125
+ ):
126
+ # Initialize/load model and set device
127
+ training = model is not None
128
+ if training: # called by train.py
129
+ device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model
130
+ half &= device.type != 'cpu' # half precision only supported on CUDA
131
+ model.half() if half else model.float()
132
+ else: # called directly
133
+ device = select_device(device, batch_size=batch_size)
134
+
135
+ # Directories
136
+ save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
137
+ (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
138
+
139
+ # Load model
140
+ model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
141
+ stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
142
+ imgsz = check_img_size(imgsz, s=stride) # check image size
143
+ half = model.fp16 # FP16 supported on limited backends with CUDA
144
+ if engine:
145
+ batch_size = model.batch_size
146
+ else:
147
+ device = model.device
148
+ if not (pt or jit):
149
+ batch_size = 1 # export.py models default to batch-size 1
150
+ LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
151
+
152
+ # Data
153
+ data = check_dataset(data) # check
154
+
155
+ # Configure
156
+ model.eval()
157
+ cuda = device.type != 'cpu'
158
+ is_coco = isinstance(data.get('val'), str) and data['val'].endswith(f'coco{os.sep}val2017.txt') # COCO dataset
159
+ nc = 1 if single_cls else int(data['nc']) # number of classes
160
+ iouv = torch.linspace(0.5, 0.95, 10, device=device) # iou vector for mAP@0.5:0.95
161
+ niou = iouv.numel()
162
+
163
+ # Dataloader
164
+ if not training:
165
+ if pt and not single_cls: # check --weights are trained on --data
166
+ ncm = model.model.nc
167
+ assert ncm == nc, f'{weights} ({ncm} classes) trained on different --data than what you passed ({nc} ' \
168
+ f'classes). Pass correct combination of --weights and --data that are trained together.'
169
+ model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz)) # warmup
170
+ pad = 0.0 if task in ('speed', 'benchmark') else 0.5
171
+ rect = False if task == 'benchmark' else pt # square inference for benchmarks
172
+ task = task if task in ('train', 'val', 'test') else 'val' # path to train/val/test images
173
+ dataloader = create_dataloader(data[task],
174
+ imgsz,
175
+ batch_size,
176
+ stride,
177
+ single_cls,
178
+ pad=pad,
179
+ rect=rect,
180
+ workers=workers,
181
+ prefix=colorstr(f'{task}: '))[0]
182
+
183
+ seen = 0
184
+ confusion_matrix = ConfusionMatrix(nc=nc)
185
+ names = dict(enumerate(model.names if hasattr(model, 'names') else model.module.names))
186
+ class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
187
+ s = ('%20s' + '%11s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
188
+ dt, p, r, f1, mp, mr, map50, map = [0.0, 0.0, 0.0], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
189
+ loss = torch.zeros(3, device=device)
190
+ jdict, stats, ap, ap_class = [], [], [], []
191
+ callbacks.run('on_val_start')
192
+ pbar = tqdm(dataloader, desc=s, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar
193
+ for batch_i, (im, targets, paths, shapes) in enumerate(pbar):
194
+ callbacks.run('on_val_batch_start')
195
+ t1 = time_sync()
196
+ if cuda:
197
+ im = im.to(device, non_blocking=True)
198
+ targets = targets.to(device)
199
+ im = im.half() if half else im.float() # uint8 to fp16/32
200
+ im /= 255 # 0 - 255 to 0.0 - 1.0
201
+ nb, _, height, width = im.shape # batch size, channels, height, width
202
+ t2 = time_sync()
203
+ dt[0] += t2 - t1
204
+
205
+ # Inference
206
+ out, train_out = model(im) if training else model(im, augment=augment, val=True) # inference, loss outputs
207
+ dt[1] += time_sync() - t2
208
+
209
+ # Loss
210
+ if compute_loss:
211
+ loss += compute_loss([x.float() for x in train_out], targets)[1] # box, obj, cls
212
+
213
+ # NMS
214
+ targets[:, 2:] *= torch.tensor((width, height, width, height), device=device) # to pixels
215
+ lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
216
+ t3 = time_sync()
217
+ out = non_max_suppression(out, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls)
218
+ dt[2] += time_sync() - t3
219
+
220
+ # Metrics
221
+ for si, pred in enumerate(out):
222
+ labels = targets[targets[:, 0] == si, 1:]
223
+ nl, npr = labels.shape[0], pred.shape[0] # number of labels, predictions
224
+ path, shape = Path(paths[si]), shapes[si][0]
225
+ correct = torch.zeros(npr, niou, dtype=torch.bool, device=device) # init
226
+ seen += 1
227
+
228
+ if npr == 0:
229
+ if nl:
230
+ stats.append((correct, *torch.zeros((2, 0), device=device), labels[:, 0]))
231
+ if plots:
232
+ confusion_matrix.process_batch(detections=None, labels=labels[:, 0])
233
+ continue
234
+
235
+ # Predictions
236
+ if single_cls:
237
+ pred[:, 5] = 0
238
+ predn = pred.clone()
239
+ scale_coords(im[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred
240
+
241
+ # Evaluate
242
+ if nl:
243
+ tbox = xywh2xyxy(labels[:, 1:5]) # target boxes
244
+ scale_coords(im[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels
245
+ labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
246
+ correct = process_batch(predn, labelsn, iouv)
247
+ if plots:
248
+ confusion_matrix.process_batch(predn, labelsn)
249
+ stats.append((correct, pred[:, 4], pred[:, 5], labels[:, 0])) # (correct, conf, pcls, tcls)
250
+
251
+ # Save/log
252
+ if save_txt:
253
+ save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt')
254
+ if save_json:
255
+ save_one_json(predn, jdict, path, class_map) # append to COCO-JSON dictionary
256
+ callbacks.run('on_val_image_end', pred, predn, path, names, im[si])
257
+
258
+ # Plot images
259
+ if plots and batch_i < 3:
260
+ plot_images(im, targets, paths, save_dir / f'val_batch{batch_i}_labels.jpg', names) # labels
261
+ plot_images(im, output_to_target(out), paths, save_dir / f'val_batch{batch_i}_pred.jpg', names) # pred
262
+
263
+ callbacks.run('on_val_batch_end')
264
+
265
+ # Compute metrics
266
+ stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*stats)] # to numpy
267
+ if len(stats) and stats[0].any():
268
+ tp, fp, p, r, f1, ap, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
269
+ ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
270
+ mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
271
+ nt = np.bincount(stats[3].astype(int), minlength=nc) # number of targets per class
272
+
273
+ # Print results
274
+ pf = '%20s' + '%11i' * 2 + '%11.3g' * 4 # print format
275
+ LOGGER.info(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
276
+ if nt.sum() == 0:
277
+ LOGGER.warning(f'WARNING: no labels found in {task} set, can not compute metrics without labels ⚠️')
278
+
279
+ # Print results per class
280
+ if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
281
+ for i, c in enumerate(ap_class):
282
+ LOGGER.info(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
283
+
284
+ # Print speeds
285
+ t = tuple(x / seen * 1E3 for x in dt) # speeds per image
286
+ if not training:
287
+ shape = (batch_size, 3, imgsz, imgsz)
288
+ LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t)
289
+
290
+ # Plots
291
+ if plots:
292
+ confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
293
+ callbacks.run('on_val_end')
294
+
295
+ # Save JSON
296
+ if save_json and len(jdict):
297
+ w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
298
+ anno_json = str(Path(data.get('path', '../coco')) / 'annotations/instances_val2017.json') # annotations json
299
+ pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
300
+ LOGGER.info(f'\nEvaluating pycocotools mAP... saving {pred_json}...')
301
+ with open(pred_json, 'w') as f:
302
+ json.dump(jdict, f)
303
+
304
+ try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
305
+ check_requirements(['pycocotools'])
306
+ from pycocotools.coco import COCO
307
+ from pycocotools.cocoeval import COCOeval
308
+
309
+ anno = COCO(anno_json) # init annotations api
310
+ pred = anno.loadRes(pred_json) # init predictions api
311
+ eval = COCOeval(anno, pred, 'bbox')
312
+ if is_coco:
313
+ eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.im_files] # image IDs to evaluate
314
+ eval.evaluate()
315
+ eval.accumulate()
316
+ eval.summarize()
317
+ map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
318
+ except Exception as e:
319
+ LOGGER.info(f'pycocotools unable to run: {e}')
320
+
321
+ # Return results
322
+ model.float() # for training
323
+ if not training:
324
+ s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
325
+ LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
326
+ maps = np.zeros(nc) + map
327
+ for i, c in enumerate(ap_class):
328
+ maps[c] = ap[i]
329
+ return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
330
+
331
+
332
+ def parse_opt():
333
+ parser = argparse.ArgumentParser()
334
+ parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
335
+ parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model.pt path(s)')
336
+ parser.add_argument('--batch-size', type=int, default=32, help='batch size')
337
+ parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
338
+ parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold')
339
+ parser.add_argument('--iou-thres', type=float, default=0.6, help='NMS IoU threshold')
340
+ parser.add_argument('--task', default='val', help='train, val, test, speed or study')
341
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
342
+ parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
343
+ parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
344
+ parser.add_argument('--augment', action='store_true', help='augmented inference')
345
+ parser.add_argument('--verbose', action='store_true', help='report mAP by class')
346
+ parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
347
+ parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
348
+ parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
349
+ parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file')
350
+ parser.add_argument('--project', default=ROOT / 'runs/val', help='save to project/name')
351
+ parser.add_argument('--name', default='exp', help='save to project/name')
352
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
353
+ parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
354
+ parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
355
+ opt = parser.parse_args()
356
+ opt.data = check_yaml(opt.data) # check YAML
357
+ opt.save_json |= opt.data.endswith('coco.yaml')
358
+ opt.save_txt |= opt.save_hybrid
359
+ print_args(vars(opt))
360
+ return opt
361
+
362
+
363
+ def main(opt):
364
+ check_requirements(requirements=ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
365
+
366
+ if opt.task in ('train', 'val', 'test'): # run normally
367
+ if opt.conf_thres > 0.001: # https://github.com/ultralytics/yolov5/issues/1466
368
+ LOGGER.info(f'WARNING: confidence threshold {opt.conf_thres} > 0.001 produces invalid results ⚠️')
369
+ run(**vars(opt))
370
+
371
+ else:
372
+ weights = opt.weights if isinstance(opt.weights, list) else [opt.weights]
373
+ opt.half = True # FP16 for fastest results
374
+ if opt.task == 'speed': # speed benchmarks
375
+ # python val.py --task speed --data coco.yaml --batch 1 --weights yolov5n.pt yolov5s.pt...
376
+ opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False
377
+ for opt.weights in weights:
378
+ run(**vars(opt), plots=False)
379
+
380
+ elif opt.task == 'study': # speed vs mAP benchmarks
381
+ # python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n.pt yolov5s.pt...
382
+ for opt.weights in weights:
383
+ f = f'study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt' # filename to save to
384
+ x, y = list(range(256, 1536 + 128, 128)), [] # x axis (image sizes), y axis
385
+ for opt.imgsz in x: # img-size
386
+ LOGGER.info(f'\nRunning {f} --imgsz {opt.imgsz}...')
387
+ r, _, t = run(**vars(opt), plots=False)
388
+ y.append(r + t) # results and times
389
+ np.savetxt(f, y, fmt='%10.4g') # save
390
+ os.system('zip -r study.zip study_*.txt')
391
+ plot_val_study(x=x) # plot
392
+
393
+
394
+ if __name__ == "__main__":
395
+ opt = parse_opt()
396
+ main(opt)